On complexification of real spaces and its manifestations in the theory of Bochner and Pettis integrals
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 706-722.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a continuation of our work [12] where we considered linear spaces in the following two situations: a real space admits a multiplication by complex scalars without changing the set itself; a real space is embedded into a wider set with a multiplication by complex scalars. We studied there also how they manifest themselves when the initial space possesses additional structures: topology, norm, inner product, as well as what happens with linear operators acting between such spaces. Changing the linearities of the linear spaces unmasks some very subtle properties which are not so obvious when the set of scalars is not changed. In the present work, we follow the same idea considering now Bochner and Pettis integrals for functions ranged in real and complex Banach and Hilbert spaces. Finally, this leads to the study of strong and weak random elements with values in real and complex Banach and Hilbert spaces, in particular, some properties of their expectations.
@article{CMFD_2018_64_4_a6,
     author = {M. E. Luna-Elizarrar\'as and F. Ram{\'\i}rez-Reyes and M. Shapiro},
     title = {On complexification of real spaces and its manifestations in the theory of {Bochner} and {Pettis} integrals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {706--722},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a6/}
}
TY  - JOUR
AU  - M. E. Luna-Elizarrarás
AU  - F. Ramírez-Reyes
AU  - M. Shapiro
TI  - On complexification of real spaces and its manifestations in the theory of Bochner and Pettis integrals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 706
EP  - 722
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a6/
LA  - ru
ID  - CMFD_2018_64_4_a6
ER  - 
%0 Journal Article
%A M. E. Luna-Elizarrarás
%A F. Ramírez-Reyes
%A M. Shapiro
%T On complexification of real spaces and its manifestations in the theory of Bochner and Pettis integrals
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 706-722
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a6/
%G ru
%F CMFD_2018_64_4_a6
M. E. Luna-Elizarrarás; F. Ramírez-Reyes; M. Shapiro. On complexification of real spaces and its manifestations in the theory of Bochner and Pettis integrals. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 706-722. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a6/

[1] I. E. Verbitskiy, “Some relations between the norm of an operator and that of its complex extension”, Math. Stud., 1976, no. 42, 3–12 (in Russian)

[2] I. E. Verbitskiy, P. P. Sereda, “About the norm of the complex extension of an operator”, Math. Stud., 1975, no. 137, 201–206 (in Russian)

[3] Abramovich Y. A., Aliprantis C. D., Sirotkin G., Troitsky G., “Some open problems and conjectures associated with the invariant subspace problem”, Positivity, 9:3 (2005), 273–286 | DOI | MR

[4] Alpay D., Luna-Elizarrarás M. E., Shapiro M., “Normes des extensions quaternionique d'operateurs réels”, C. R. Math. Acad. Sci. Paris, 340:9 (2005), 639–643 | DOI | MR | Zbl

[5] Defant A., “Best constants for the norm of the complexification of operators between $L_p$-spaces”, Lect. Notes Pure Appl. Math., 150 (1994), 173–180 | MR

[6] Engelking R., General topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[7] Figiel T., Iwaniec T., Pelczyński A., “Computing norms and critical exponents of some operators in $L_p$-spaces”, Stud. Math., 79:3 (1984), 227–274 | DOI | MR | Zbl

[8] Fréchet M., “Les éléments aléatoires de nature quelconque dans un espace distancié”, Ann. Inst. Henri Poincaré, 10:4 (1948), 215–310 | MR

[9] Glazman I. M., Ljubič J. I., Finite-dimensional linear analysis: a systematic presentation in problem form, The MIT Press, London, 1974 | MR | Zbl

[10] Krivine J. I., “Sur la complexification des opérateurs de $L_\infty$ dans $L_1$”, C. R. Math. Acad. Sci. Paris, 284 (1977), 377–379 | MR | Zbl

[11] Krivine J. I., “Constantes de Grothendieck et fonctions de type positif sur les sphéres”, Adv. Math., 31 (1979), 16–30 | DOI | MR | Zbl

[12] Luna-Elizarrarás M. E., Ramírez-Reyes F., Shapiro M., “Complexifications of real spaces: general aspects”, Georgian Math. J., 19 (2012), 259–282 | DOI | MR | Zbl

[13] Luna-Elizarrarás M. E., Shapiro M., “On some properties of quaternionic inner product spaces”, 25th Int. Coll. Group theoretical methods in physics (Cocoyoc, México, 2–6 August 2004), Inst. of Phys. Publ., Bristol–Philadelphia, 2005, 371–376

[14] Luna-Elizarrarás M. E., Shapiro M., “Preservation of the norms of linear operator acting on some quaternionic function spaces”, Oper. Theory Adv. Appl., 157 (2005), 205–220 | DOI | MR | Zbl

[15] Luna-Elizarrarás M. E., Shapiro M., “On modules over bicomplex and hyperbolic numbers”, Applied complex and quaternionic approximation, Edizioni Nuova Cultura, Rome, 2009, 76–92

[16] Luna-Elizarrarás M. E., Shapiro M., “On some relations between real, complex and quaternionic linear spaces”, More progresses in analysis, World Scientific, Singapore, 2009, 999–1008 | DOI | Zbl

[17] Mourier E., “Éléments aléatoires dans un espace de Banach”, Ann. Inst. Henri Poincaré, 13:3 (1953), 161–244 | MR | Zbl

[18] Riesz M., “Sur les maxima des formes bilinéaires et sur les fonctionelles linéaires”, Acta Math., 49 (1926), 465–497 | DOI | MR

[19] Schwabik S., Gouju Y., Topics in Banach space integration, World Scientific, Hackensack, 2005 | MR | Zbl

[20] Soukhomlinoff G. A., “Über fortsetzung von linearen funktionalen in linearen komplexen räumen und linearen quaternionräumen”, Mat. Sb. (N.S.), 3(45):2 (1938), 353–358 | Zbl

[21] Taylor R. L., “Some weak laws for random elements in normed linear spaces”, Ann. Math. Stat., 43 (1972), 1267–1274 | DOI | MR | Zbl

[22] Taylor R. L., Wei D., “Laws of large numbers for tight random elements in normed linear spaces”, Ann. Probab., 7:1 (1979), 150–155 | DOI | MR | Zbl

[23] Thorin G. O., “Convexity theorems generalizing those of M. Riesz and Hadamard with some applications”, Comm. Sem. Math. Univ. Lund Medd. Lunds Univ. Sem., 9 (1948), 1–58 | MR

[24] Vakhania N. N., “Random vectors with values in quaternion Hilbert spaces”, Theory Probab. Appl., 43:1 (1999), 99–115 | DOI | MR | Zbl

[25] Vakhania N. N., Chobanyan S. A., Tarieladze V. I., Probability distributions on Banach spaces, D. Reidel Publ., Dordrecht, 1987 | MR | Zbl

[26] Vakhania N. N., Kandelaki N. P., “Random vectors with values in complex Hilbert spaces”, Theory Probab. Appl., 41:1 (1997), 116–131 | DOI | MR | Zbl

[27] Zygmund A., Trigonometric series, v. I, Cambridge Univ. Press, Cambridge, 1968 | MR