Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_4_a5, author = {N. Kh. Kasymov and F. N. Ibragimov}, title = {Computably separable models}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {682--705}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a5/} }
N. Kh. Kasymov; F. N. Ibragimov. Computably separable models. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 682-705. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a5/
[1] S. S. Goncharov, “Data models and languages for their description”, Comput. Syst. Proc. Inst. Math. Sib. Branch Acad. Sci. USSR, 107, 1985, 52–70 (in Russian) | Zbl
[2] S. S. Goncharov, Yu. L. Ershov, Constructive Models, Nauchnaya kniga, Novosibirsk, 1999 (in Russian)
[3] Yu. L. Ershov, Numeration Theory, Nauka, Moscow, 1977 (in Russian)
[4] Yu. L. Ershov, “Solvability Problems and Constructive Models”, Nauka, Moscow, 1980 (in Russian)
[5] N. Kh. Kasymov, “On algebras with finitely approximable positively representable enrichments”, Algebra Logic, 26:6 (1987), 715–730 (in Russian) | MR | Zbl
[6] N. Kh. Kasymov, “Positive algebras with congruences of finite index”, Algebra Logic, 30:3 (1991), 293–305 (in Russian) | MR | Zbl
[7] N. Kh. Kasymov, “Positive algebras with countable congruence lattices”, Algebra Logic, 31:1 (1992), 21–37 (in Russian) | MR | Zbl
[8] N. Kh. Kasymov, “Positive algebras with Noetherian congruence lattices”, Siberian Math. J., 33:2 (1992), 181–185 (in Russian) | MR | Zbl
[9] N. Kh. Kasymov, “On the number of congruences of algebras over simple sets”, Math. Notes, 52:2 (1992), 150–152 (in Russian) | MR | Zbl
[10] N. Kh. Kasymov, “Homomorphisms onto negative algebras”, Algebra Logic, 31:2 (1992), 132–144 (in Russian) | MR | Zbl
[11] N. Kh. Kasymov, “Separation axioms and partitions of the set of natural numbers”, Siberian Math. J., 34:3 (1993), 81–85 (in Russian) | MR | Zbl
[12] N. Kh. Kasymov, “Enumerated algebras with uniformly recursive-separable classes”, Siberian Math. J., 34:5 (1993), 85–102 (in Russian) | MR | Zbl
[13] N. Kh. Kasymov, “Algebras over negative equivalences”, Algebra Logic, 33:1 (1994), 76–80 (in Russian) | MR | Zbl
[14] N. Kh. Kasymov, “Recursively separable enumerated algebras”, Progr. Math. Sci., 51:3 (1996), 145–176 (in Russian) | DOI | MR | Zbl
[15] N. Kh. Kasymov, “On computability of negative representations of the Goncharov standard model of arithmetics”, Int. Conf. “Algebra, Analysis and Quantum Probability”, Proc., Tashkent, 2015, 117–119 (in Russian)
[16] N. Kh. Kasymov, “Homomorphisms onto effectively separable algebras”, Siberian Math. J., 57:1 (2016), 47–66 (in Russian) | DOI | MR | Zbl
[17] N. Kh. Kasymov, R. N. Dadazhanov, “Negative dense linear orders”, Siberian Math. J., 58:6 (2017), 1306–1331 (in Russian) | DOI | MR | Zbl
[18] N. Kh. Kasymov, F. N. Ibragimov, “Structure characterization of the recursively separable models”, Rep. Acad. Sci. Resp. Uzbekistan, 1998, no. 11, 14–16 (in Russian)
[19] N. Kh. Kasymov, A. S. Morozov, “Definability of linear orders over negative equivalences”, Algebra Logic, 55:1 (2016), 37–57 (in Russian) | DOI | MR | Zbl
[20] A. I. Mal'tsev, “To general theory of algebraic systems”, Math. Digest, 35(77):1 (1954), 3–20 (in Russian) | MR | Zbl
[21] A. I. Mal'tsev, “Constructive algebras. I”, Progr. Math. Sci., 16:3 (1961), 3–60 (in Russian) | MR | Zbl
[22] A. I. Mal'tsev, “Positive and negative numerations”, Rep. Acad. Sci. USSR, 160:2 (1965), 278–280 (in Russian) | MR | Zbl
[23] A. I. Mal'tsev, “Algebraic Systems”, Nauka, Moscow, 1970 (in Russian)
[24] A. I. Mal'tsev, “Algorithms and Recursive Functions”, Nauka, Moscow, 1986 (in Russian)
[25] P. Martin-Lef, Sketches on Constructive Mathematics, Mir, Moscow, 1975 (in Russian)
[26] V. A. Uspenskiy, “On computable operations”, Rep. Acad. Sci. USSR, 103:5 (1955), 773–776 (in Russian)
[27] V. A. Uspenskiy, “Systems of countable sets and their numerations”, Rep. Acad. Sci. USSR, 105:6 (1955), 1155–1158 (in Russian)
[28] Baur W., “Rekursive algebren mit kettenbedingungen”, Z. Math. Logik Grundl. Math., 20 (1974), 37–46 | DOI | MR | Zbl
[29] Baur W., “Uber recursive strukturen”, Invent. Math., 23:2 (1974), 89–95 | DOI | MR | Zbl
[30] Bergstra J. A., Tucker J. V., “A characterization of computable data types by means of a finite, equational specification method”, Lecture Notes in Comput. Sci., 85, 1980, 76–90 | DOI | MR | Zbl
[31] Broy M., Dosch W., Partsch H., Pepper P., Wirsing M., “Existential quantifiers in abstract data types”, Lecture Notes in Comput. Sci., 71, 1979, 73–81 | DOI | MR
[32] Feiner L., “Hierarchies of Boolean algebras”, J. Symb. Logic, 35:2 (1970), 365–373 | DOI | MR
[33] Fokina E. B., Khoussainov B., Semukhin P. D., “Linear orders realized by C. E. equivalence relations”, J. Symb. Logic, 81:2 (2016), 463–482 | DOI | MR | Zbl
[34] Kamin S., “Some definitions for algebraic data type specifications”, SIGPLAN Notes, 14:3 (1979), 28–37 | DOI
[35] Khoussainov B., Slaman T., Semukhin P., “$\prod_1^0$-presentasions of algebras”, Arch. Math. Logic, 45:6 (2006), 769–781 | DOI | MR | Zbl
[36] Morozov A. S., Truss J. K., “On computable automorphisms of the rational numbers”, J. Symb. Logic, 66:3 (2001), 1458–1470 | DOI | MR | Zbl
[37] Nerode A., “General topology and partial recursive functionals”, Talks Cornell Summ. Inst. Symb. Log., Cornell, 1957, 247–251