Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_4_a4, author = {I. A. Ikromov and S. E. Usmanov}, title = {On boundedness of maximal operators associated with hypersurfaces}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {650--681}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/} }
TY - JOUR AU - I. A. Ikromov AU - S. E. Usmanov TI - On boundedness of maximal operators associated with hypersurfaces JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 650 EP - 681 VL - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/ LA - ru ID - CMFD_2018_64_4_a4 ER -
I. A. Ikromov; S. E. Usmanov. On boundedness of maximal operators associated with hypersurfaces. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 650-681. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/
[1] V. I. Arnold, “Remarks on the stationary phase method and the Coxeter numbers”, Progr. Math. Sci., 28:5 (1973), 17–44 (in Russian) | MR | Zbl
[2] V. I. Arnold, A. N. Varchenko, S. M. Guseyn-Zade, Singularities of Differentiable Mappings, v. 1, Classification of singular points, caustics, and wave fronts, Nauka, Moscow, 1982 (in Russian)
[3] V. I. Arnold, A. N. Varchenko, S. M. Guseyn-Zade, Singularities of Differentiable Mappings, v. 2, Monodromy and Asymptotics of Integrals, Nauka, Moscow, 1984 (in Russian)
[4] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometric integrals”, Bull. Acad. Sci. USSR. Ser. Math., 43:5 (1979), 971–1003 (in Russian) | MR | Zbl
[5] I. N. Bernshteyn, I. M. Gel'fand, “Meromorphic property of the function $P^\lambda$”, Funct. Anal. Appl., 3:1 (1969), 84–85 (in Russian) | MR | Zbl
[6] A. N. Varchenko, “Newton's polyhedrons and estimates of oscillating integrals”, Funct. Anal. Appl., 10:3 (1976), 13–38 (in Russian) | MR | Zbl
[7] I. M. Gel'fand, G. E. Shilov, Generalized Functions and Operations on Them, Fizmatgiz, Moscow, 1959 (in Russian)
[8] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Contemporary Geometry, Nauka, Moscow, 1979 (in Russian)
[9] I. A. Ikromov, “Dampened oscillatory integrals and maximal operators”, Math. Notes, 78:6 (2005), 833–852 (in Russian) | DOI | MR | Zbl
[10] I. A. Ikromov, “Summability of oscillatory integrals with respect to parameters and the problem on boundedness of the Fourier transformation on curves”, Math. Notes, 87:5 (2010), 734–755 (in Russian) | DOI | MR | Zbl
[11] I. A. Ikromov, Sh. A. Muranov, “On estimates of oscillatory integrals with fading factor”, Math. Notes, 104:2 (2018), 200–215 (in Russian) | DOI | Zbl
[12] V. N. Karpushkin, “Uniform estimates of oscillating integrals with parabolic and hyperbolic phase”, Proc. Petrovskii Semin., 9, 1983, 3–39 (in Russian) | Zbl
[13] V. N. Karpushkin, “Theorem on uniform estimates of oscillating integrals with phase depending on two variables”, Proc. Petrovskii Semin., 10, 1983, 150–169 (in Russian)
[14] V. P. Palamodov, “Generalized functions and harmonic analysis”, Totals Sci. Tech. Contemp. Probl. Math. Fundam. Napravl., 72, 1991, 5–134 (in Russian) | MR | Zbl
[15] S. L. Sobolev, “On one theorem of functional analysis”, Math. Digest, 4:3 (1938), 471–497 (in Russian) | Zbl
[16] D. D. Turakulov, “Uniform estimates of oscillating integrals with convex phase”, Bull. Bashkir Univ., 13:2 (2008), 236–240 (in Russian)
[17] M. V. Fedoryuk, Saddle-Point Method, Nauka, Moscow, 1977 (in Russian)
[18] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Mir, Moscow, 1986, (Russian translation)
[19] Atiyah M. F., “Resolution of singularities and division of distributions”, Commun. Pure Appl. Math., 23:2 (1970), 145–150 | DOI | MR | Zbl
[20] Bourgain J., “Averages in the plane convex curves and maximal operators”, J. Anal. Math., 47 (1986), 69–85 | DOI | MR | Zbl
[21] Buschenhenke S., Dendrinos S., Ikromov I. A., Müller D., Estimates for maximal functions associated to hypersurfaces in $\mathbb R^3$ with height $h2$. Part I, arXiv: 1704.06520[math.CA]
[22] Duistermaat J. J., “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Commun. Pure Appl. Math., 27 (1974), 207–281 | DOI | MR | Zbl
[23] Greenblatt M., “Newton polygons and local integrability of negative powers of smooth functions in the plane”, Trans. Am. Math. Soc., 358:2 (2006), 657–670 | DOI | MR | Zbl
[24] Greenblatt M., “$L^p$ boundedness of maximal averages over hypersurfaces in $\mathbb R^3$”, Trans. Am. Math. Soc., 365:4 (2013), 1875–1900 | DOI | MR | Zbl
[25] Greenleaf A., “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR | Zbl
[26] Hartman P., Nirenberg L., “On spherical image maps whose Jacobians do not change sign”, Am. J. Math., 81 (1959), 901–920 | DOI | MR | Zbl
[27] Ikromov I. A., Kempe M., Müller D., “Estimates for maximal functions associated to hypersurfaces in $\mathbb R^{3}$ and related problems of harmonic analysis”, Acta Math., 204 (2010), 151–271 | DOI | MR | Zbl
[28] Ikromov I. A., Müller D., “On adapted coordinate systems”, Trans. Am. Math. Soc., 363:6 (2011), 2821–2848 | DOI | MR | Zbl
[29] Ikromov I. A., Müller D., “Uniform estimates for the Fourier transform of surface carried measures in $\mathbb R^3$ and an application to Fourier restriction”, J. Fourier Anal. Appl., 17:6 (2011), 1292–1332 | DOI | MR | Zbl
[30] Ikromov I. A., Müller D., Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra, Princeton Univ. Press, Princeton–Oxford, 2016 | MR | Zbl
[31] Iosevich A., “Maximal operators associated to families of flat curves in the plane”, Duke Math. J., 76:2 (1994), 633–644 | DOI | MR | Zbl
[32] Iosevich A., Liflyand E., Decay of the Fourier transform. Analytic and geometric aspects, Birkhäuser/Springer, Basel, 2014 | MR | Zbl
[33] Iosevich A., Sawyer E., “Maximal averages over surfaces”, Adv. Math., 132:1 (1997), 46–119 | DOI | MR | Zbl
[34] Iosevich A., Sawyer E., Seeger A., “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR | Zbl
[35] Nagel A., Seeger A., Wainger S., “Averages over convex hypersurfaces”, Am. J. Math., 115:4 (1993), 903–927 | DOI | MR | Zbl
[36] Phong D. H., Stein E. M., Sturm J. A., “On the growth and stability of real-analytic functions”, Am. J. Math., 121:3 (1999), 519–554 | DOI | MR | Zbl
[37] Schulz H., “Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms”, Indiana Univ. Math. J., 40:4 (1999), 1267–1275 | DOI | MR
[38] Sogge C. D., “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature”, Fourier analysis and partial differential equations, CRC, Boca Raton, 1995, 317–323 | MR | Zbl
[39] Sogge C. D., Stein E. M., “Averages of functions over hypersurfaces in $\mathbb R^n$”, Invent. Math., 82:3 (1985), 543–556 | DOI | MR | Zbl
[40] Stein E. M., “Maximal functions. I. Spherical means”, Proc. Natl. Acad. Sci. USA, 73:7 (1976), 2174–2175 | DOI | MR | Zbl
[41] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl
[42] Tristan C., Greenleaf A., Pramanik M., “A multi-dimensional resolution of singularities with applications to analysis”, Am. J. Math., 135:5 (2013), 1179–1252 | DOI | MR | Zbl
[43] Zimmermann E., On $L^p$-estimates for maximal averages over hypersurfaces not satisfying the transversality condition, Doctoral PhD thesis, Christian-Albrechts-Universität, Kiel, 2014