On boundedness of maximal operators associated with hypersurfaces
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 650-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the criterion of boundedness of maximal operators associated with smooth hypersurfaces. Also we compute the exact value of the boundedness index of such operators associated with arbitrary convex analytic hypersurfaces in the case where the height of a hypersurface in the sense of A. N. Varchenko is greater than 2. Moreover, we obtain the exact value of the boundedness index for degenerated smooth hypersurfaces, i.e., for hypersurfaces satisfying conditions of the classical Hartman–Nirenberg theorem. The obtained results justify the Stein–Iosevich–Sawyer hypothesis for arbitrary convex analytic hypersurfaces as well as for smooth degenerated hypersurfaces. Also we discuss some related problems of the theory of oscillatory integrals.
@article{CMFD_2018_64_4_a4,
     author = {I. A. Ikromov and S. E. Usmanov},
     title = {On boundedness of maximal operators associated with hypersurfaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {650--681},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/}
}
TY  - JOUR
AU  - I. A. Ikromov
AU  - S. E. Usmanov
TI  - On boundedness of maximal operators associated with hypersurfaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 650
EP  - 681
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/
LA  - ru
ID  - CMFD_2018_64_4_a4
ER  - 
%0 Journal Article
%A I. A. Ikromov
%A S. E. Usmanov
%T On boundedness of maximal operators associated with hypersurfaces
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 650-681
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/
%G ru
%F CMFD_2018_64_4_a4
I. A. Ikromov; S. E. Usmanov. On boundedness of maximal operators associated with hypersurfaces. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 650-681. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a4/

[1] V. I. Arnold, “Remarks on the stationary phase method and the Coxeter numbers”, Progr. Math. Sci., 28:5 (1973), 17–44 (in Russian) | MR | Zbl

[2] V. I. Arnold, A. N. Varchenko, S. M. Guseyn-Zade, Singularities of Differentiable Mappings, v. 1, Classification of singular points, caustics, and wave fronts, Nauka, Moscow, 1982 (in Russian)

[3] V. I. Arnold, A. N. Varchenko, S. M. Guseyn-Zade, Singularities of Differentiable Mappings, v. 2, Monodromy and Asymptotics of Integrals, Nauka, Moscow, 1984 (in Russian)

[4] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometric integrals”, Bull. Acad. Sci. USSR. Ser. Math., 43:5 (1979), 971–1003 (in Russian) | MR | Zbl

[5] I. N. Bernshteyn, I. M. Gel'fand, “Meromorphic property of the function $P^\lambda$”, Funct. Anal. Appl., 3:1 (1969), 84–85 (in Russian) | MR | Zbl

[6] A. N. Varchenko, “Newton's polyhedrons and estimates of oscillating integrals”, Funct. Anal. Appl., 10:3 (1976), 13–38 (in Russian) | MR | Zbl

[7] I. M. Gel'fand, G. E. Shilov, Generalized Functions and Operations on Them, Fizmatgiz, Moscow, 1959 (in Russian)

[8] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Contemporary Geometry, Nauka, Moscow, 1979 (in Russian)

[9] I. A. Ikromov, “Dampened oscillatory integrals and maximal operators”, Math. Notes, 78:6 (2005), 833–852 (in Russian) | DOI | MR | Zbl

[10] I. A. Ikromov, “Summability of oscillatory integrals with respect to parameters and the problem on boundedness of the Fourier transformation on curves”, Math. Notes, 87:5 (2010), 734–755 (in Russian) | DOI | MR | Zbl

[11] I. A. Ikromov, Sh. A. Muranov, “On estimates of oscillatory integrals with fading factor”, Math. Notes, 104:2 (2018), 200–215 (in Russian) | DOI | Zbl

[12] V. N. Karpushkin, “Uniform estimates of oscillating integrals with parabolic and hyperbolic phase”, Proc. Petrovskii Semin., 9, 1983, 3–39 (in Russian) | Zbl

[13] V. N. Karpushkin, “Theorem on uniform estimates of oscillating integrals with phase depending on two variables”, Proc. Petrovskii Semin., 10, 1983, 150–169 (in Russian)

[14] V. P. Palamodov, “Generalized functions and harmonic analysis”, Totals Sci. Tech. Contemp. Probl. Math. Fundam. Napravl., 72, 1991, 5–134 (in Russian) | MR | Zbl

[15] S. L. Sobolev, “On one theorem of functional analysis”, Math. Digest, 4:3 (1938), 471–497 (in Russian) | Zbl

[16] D. D. Turakulov, “Uniform estimates of oscillating integrals with convex phase”, Bull. Bashkir Univ., 13:2 (2008), 236–240 (in Russian)

[17] M. V. Fedoryuk, Saddle-Point Method, Nauka, Moscow, 1977 (in Russian)

[18] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Mir, Moscow, 1986, (Russian translation)

[19] Atiyah M. F., “Resolution of singularities and division of distributions”, Commun. Pure Appl. Math., 23:2 (1970), 145–150 | DOI | MR | Zbl

[20] Bourgain J., “Averages in the plane convex curves and maximal operators”, J. Anal. Math., 47 (1986), 69–85 | DOI | MR | Zbl

[21] Buschenhenke S., Dendrinos S., Ikromov I. A., Müller D., Estimates for maximal functions associated to hypersurfaces in $\mathbb R^3$ with height $h2$. Part I, arXiv: 1704.06520[math.CA]

[22] Duistermaat J. J., “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Commun. Pure Appl. Math., 27 (1974), 207–281 | DOI | MR | Zbl

[23] Greenblatt M., “Newton polygons and local integrability of negative powers of smooth functions in the plane”, Trans. Am. Math. Soc., 358:2 (2006), 657–670 | DOI | MR | Zbl

[24] Greenblatt M., “$L^p$ boundedness of maximal averages over hypersurfaces in $\mathbb R^3$”, Trans. Am. Math. Soc., 365:4 (2013), 1875–1900 | DOI | MR | Zbl

[25] Greenleaf A., “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR | Zbl

[26] Hartman P., Nirenberg L., “On spherical image maps whose Jacobians do not change sign”, Am. J. Math., 81 (1959), 901–920 | DOI | MR | Zbl

[27] Ikromov I. A., Kempe M., Müller D., “Estimates for maximal functions associated to hypersurfaces in $\mathbb R^{3}$ and related problems of harmonic analysis”, Acta Math., 204 (2010), 151–271 | DOI | MR | Zbl

[28] Ikromov I. A., Müller D., “On adapted coordinate systems”, Trans. Am. Math. Soc., 363:6 (2011), 2821–2848 | DOI | MR | Zbl

[29] Ikromov I. A., Müller D., “Uniform estimates for the Fourier transform of surface carried measures in $\mathbb R^3$ and an application to Fourier restriction”, J. Fourier Anal. Appl., 17:6 (2011), 1292–1332 | DOI | MR | Zbl

[30] Ikromov I. A., Müller D., Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra, Princeton Univ. Press, Princeton–Oxford, 2016 | MR | Zbl

[31] Iosevich A., “Maximal operators associated to families of flat curves in the plane”, Duke Math. J., 76:2 (1994), 633–644 | DOI | MR | Zbl

[32] Iosevich A., Liflyand E., Decay of the Fourier transform. Analytic and geometric aspects, Birkhäuser/Springer, Basel, 2014 | MR | Zbl

[33] Iosevich A., Sawyer E., “Maximal averages over surfaces”, Adv. Math., 132:1 (1997), 46–119 | DOI | MR | Zbl

[34] Iosevich A., Sawyer E., Seeger A., “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR | Zbl

[35] Nagel A., Seeger A., Wainger S., “Averages over convex hypersurfaces”, Am. J. Math., 115:4 (1993), 903–927 | DOI | MR | Zbl

[36] Phong D. H., Stein E. M., Sturm J. A., “On the growth and stability of real-analytic functions”, Am. J. Math., 121:3 (1999), 519–554 | DOI | MR | Zbl

[37] Schulz H., “Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms”, Indiana Univ. Math. J., 40:4 (1999), 1267–1275 | DOI | MR

[38] Sogge C. D., “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature”, Fourier analysis and partial differential equations, CRC, Boca Raton, 1995, 317–323 | MR | Zbl

[39] Sogge C. D., Stein E. M., “Averages of functions over hypersurfaces in $\mathbb R^n$”, Invent. Math., 82:3 (1985), 543–556 | DOI | MR | Zbl

[40] Stein E. M., “Maximal functions. I. Spherical means”, Proc. Natl. Acad. Sci. USA, 73:7 (1976), 2174–2175 | DOI | MR | Zbl

[41] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[42] Tristan C., Greenleaf A., Pramanik M., “A multi-dimensional resolution of singularities with applications to analysis”, Am. J. Math., 135:5 (2013), 1179–1252 | DOI | MR | Zbl

[43] Zimmermann E., On $L^p$-estimates for maximal averages over hypersurfaces not satisfying the transversality condition, Doctoral PhD thesis, Christian-Albrechts-Universität, Kiel, 2014