Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_4_a3, author = {N. M. Zhabborov and T. U. Otaboev and Sh. Ya. Khursanov}, title = {The {Schwarz} inequality and the {Schwarz} formula for $A$-analytic functions}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {637--649}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/} }
TY - JOUR AU - N. M. Zhabborov AU - T. U. Otaboev AU - Sh. Ya. Khursanov TI - The Schwarz inequality and the Schwarz formula for $A$-analytic functions JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 637 EP - 649 VL - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/ LA - ru ID - CMFD_2018_64_4_a3 ER -
%0 Journal Article %A N. M. Zhabborov %A T. U. Otaboev %A Sh. Ya. Khursanov %T The Schwarz inequality and the Schwarz formula for $A$-analytic functions %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 637-649 %V 64 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/ %G ru %F CMFD_2018_64_4_a3
N. M. Zhabborov; T. U. Otaboev; Sh. Ya. Khursanov. The Schwarz inequality and the Schwarz formula for $A$-analytic functions. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 637-649. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/
[1] B. V. Boyarskiy, “Homeomorphic solutions of Beltrami systems”, Rep. Acad. Sci. USSR, 102:4 (1955), 661–664 (in Russian) | MR
[2] B. V. Boyarskiy, “Generalized solutions of a first-order system of differential equations of elliptic type with discontinuous coefficients”, Math. Digest, 43(85):4 (1957), 451–503 (in Russian) | MR | Zbl
[3] A. L. Bukhgeym, “Inversion Formulas in Inverse Problems”, Addition to the Book: M. M. Lavrentyev, L. Ya. Savelyev, Linear Operators and Ill-Posed Problems, Nauka, Moscow, 1991 (in Russian) | Zbl
[4] A. L. Bukhgeym, S. G. Kazantsev, “Elliptic systems of Beltrami type and problems of tomograpy”, Rep. Acad. Sci. USSR, 315:1 (1990), 15–19 (in Russian) | MR
[5] I. N. Vekua, Generalized Analytic Functions, Nauka, Moscow, 1988 (in Russian)
[6] L. I. Volkovyskiy, “Some questions of the theory of quasiconformal mappings”, Some Problems of Mathematics and Mechanics, Dedicated to 70th anniversary of M. A. Lavrent'ev, Nauka, Leningrad, 1970, 128–134 (in Russian)
[7] N. M. Zhabborov, Kh. Kh. Imomnazarov, Some Initial Boundary-Value Problems of Mechanics of Two-Velocity Media, Izd-vo NUUz, Tashkent, 2012 (in Russian)
[8] N. M. Zhabborov, T. U. Otaboev, “The Cauchy theorem for $A(z)$-analytic functions”, Uzb. Math. J., 2014, no. 1, 15–18 (in Russian) | MR
[9] N. M. Zhabborov, T. U. Otaboev, “An analog of the Cauchy integral formula for $A$-analytic functions”, Uzb. Math. J., 2016, no. 4, 50–59 (in Russian) | MR
[10] D. A. Kovtonyuk, I. V. Petkov, V. I. Ryazanov, R. R. Salimov, “Boundary behavior and the Dirichlet problem for the Beltrami equations”, Algebra Anal., 25:4 (2013), 101–124 (in Russian) | MR | Zbl
[11] A. N. Kondrashov, “Beltrami equations degenerating on an arc”, Bull. Volgograd State Univ. Ser. 1. Math. Phys., 24:5 (2014), 24–39 (in Russian)
[12] M. A. Lavrent'ev, B. V. Shabat, Method of the Theory of Functions of Complex Variable, Fizmatgiz, Moscow, 1958 (in Russian)
[13] E. Kh. Yakubov, “On solutions of the Beltrami equations with degeneration”, Rep. Acad. Sci. USSR, 243:5 (1978), 1148–1149 (in Russian) | MR | Zbl
[14] Ahlfors L., Lectures on quasiconformal mappings, Springer, Toronto–New York–London, 1966 | MR
[15] Gutlyanski V., Ryazanov V., Srebro U., Yakubov E., The Beltrami equation. A geometric approach, Springer, Berlin, 2011 | MR
[16] Sadullaev A., Jabborov N. M., “On a class of $A$-analytic functions”, J. Sib. Fed. Univ. Maths. Phys., 9:3 (2016), 374–383 | DOI | MR
[17] Srebro U., Yakubov E., “$\mu$-Homeomorphisms”, Contemp. Math., 211 (1997), 473–479 | DOI | MR | Zbl
[18] Zhabborov N. M., “Morer's theorem and functional series in the class of $A$-analytic functions”, J. Sib. Fed. Univ. Maths. Phys., 9:3 (2018), 374–383 | MR