The Schwarz inequality and the Schwarz formula for $A$-analytic functions
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 637-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study $A$-analytic functions. We consider main fundamental theorems of the theory of $A$-analytic functions and prove analogs of the Schwarz inequality, the Schwars formula, and the Poisson formula for $A$-analytic functions.
@article{CMFD_2018_64_4_a3,
     author = {N. M. Zhabborov and T. U. Otaboev and Sh. Ya. Khursanov},
     title = {The {Schwarz} inequality and the {Schwarz} formula for $A$-analytic functions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {637--649},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/}
}
TY  - JOUR
AU  - N. M. Zhabborov
AU  - T. U. Otaboev
AU  - Sh. Ya. Khursanov
TI  - The Schwarz inequality and the Schwarz formula for $A$-analytic functions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 637
EP  - 649
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/
LA  - ru
ID  - CMFD_2018_64_4_a3
ER  - 
%0 Journal Article
%A N. M. Zhabborov
%A T. U. Otaboev
%A Sh. Ya. Khursanov
%T The Schwarz inequality and the Schwarz formula for $A$-analytic functions
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 637-649
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/
%G ru
%F CMFD_2018_64_4_a3
N. M. Zhabborov; T. U. Otaboev; Sh. Ya. Khursanov. The Schwarz inequality and the Schwarz formula for $A$-analytic functions. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 637-649. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a3/

[1] B. V. Boyarskiy, “Homeomorphic solutions of Beltrami systems”, Rep. Acad. Sci. USSR, 102:4 (1955), 661–664 (in Russian) | MR

[2] B. V. Boyarskiy, “Generalized solutions of a first-order system of differential equations of elliptic type with discontinuous coefficients”, Math. Digest, 43(85):4 (1957), 451–503 (in Russian) | MR | Zbl

[3] A. L. Bukhgeym, “Inversion Formulas in Inverse Problems”, Addition to the Book: M. M. Lavrentyev, L. Ya. Savelyev, Linear Operators and Ill-Posed Problems, Nauka, Moscow, 1991 (in Russian) | Zbl

[4] A. L. Bukhgeym, S. G. Kazantsev, “Elliptic systems of Beltrami type and problems of tomograpy”, Rep. Acad. Sci. USSR, 315:1 (1990), 15–19 (in Russian) | MR

[5] I. N. Vekua, Generalized Analytic Functions, Nauka, Moscow, 1988 (in Russian)

[6] L. I. Volkovyskiy, “Some questions of the theory of quasiconformal mappings”, Some Problems of Mathematics and Mechanics, Dedicated to 70th anniversary of M. A. Lavrent'ev, Nauka, Leningrad, 1970, 128–134 (in Russian)

[7] N. M. Zhabborov, Kh. Kh. Imomnazarov, Some Initial Boundary-Value Problems of Mechanics of Two-Velocity Media, Izd-vo NUUz, Tashkent, 2012 (in Russian)

[8] N. M. Zhabborov, T. U. Otaboev, “The Cauchy theorem for $A(z)$-analytic functions”, Uzb. Math. J., 2014, no. 1, 15–18 (in Russian) | MR

[9] N. M. Zhabborov, T. U. Otaboev, “An analog of the Cauchy integral formula for $A$-analytic functions”, Uzb. Math. J., 2016, no. 4, 50–59 (in Russian) | MR

[10] D. A. Kovtonyuk, I. V. Petkov, V. I. Ryazanov, R. R. Salimov, “Boundary behavior and the Dirichlet problem for the Beltrami equations”, Algebra Anal., 25:4 (2013), 101–124 (in Russian) | MR | Zbl

[11] A. N. Kondrashov, “Beltrami equations degenerating on an arc”, Bull. Volgograd State Univ. Ser. 1. Math. Phys., 24:5 (2014), 24–39 (in Russian)

[12] M. A. Lavrent'ev, B. V. Shabat, Method of the Theory of Functions of Complex Variable, Fizmatgiz, Moscow, 1958 (in Russian)

[13] E. Kh. Yakubov, “On solutions of the Beltrami equations with degeneration”, Rep. Acad. Sci. USSR, 243:5 (1978), 1148–1149 (in Russian) | MR | Zbl

[14] Ahlfors L., Lectures on quasiconformal mappings, Springer, Toronto–New York–London, 1966 | MR

[15] Gutlyanski V., Ryazanov V., Srebro U., Yakubov E., The Beltrami equation. A geometric approach, Springer, Berlin, 2011 | MR

[16] Sadullaev A., Jabborov N. M., “On a class of $A$-analytic functions”, J. Sib. Fed. Univ. Maths. Phys., 9:3 (2016), 374–383 | DOI | MR

[17] Srebro U., Yakubov E., “$\mu$-Homeomorphisms”, Contemp. Math., 211 (1997), 473–479 | DOI | MR | Zbl

[18] Zhabborov N. M., “Morer's theorem and functional series in the class of $A$-analytic functions”, J. Sib. Fed. Univ. Maths. Phys., 9:3 (2018), 374–383 | MR