To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 547-572

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem of small motions of two Oldroyd viscoelastic incompressible fluids contained in a fixed vessel. By means of the operator approach, we reduce the original initialboundary value problem to the Cauchy problem for a differential operator equation in a Hilbert space and prove the well-posed solvability of the problem on an arbitrary interval of time. We obtain the equation for normal oscillations of the hydraulic system under consideration (Krein generalized operator pencil).
@article{CMFD_2018_64_3_a3,
     author = {N. D. Kopachevsky},
     title = {To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {547--572},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/}
}
TY  - JOUR
AU  - N. D. Kopachevsky
TI  - To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 547
EP  - 572
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/
LA  - ru
ID  - CMFD_2018_64_3_a3
ER  - 
%0 Journal Article
%A N. D. Kopachevsky
%T To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 547-572
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/
%G ru
%F CMFD_2018_64_3_a3
N. D. Kopachevsky. To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 547-572. http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/