Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_3_a3, author = {N. D. Kopachevsky}, title = {To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {547--572}, publisher = {mathdoc}, volume = {64}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/} }
TY - JOUR AU - N. D. Kopachevsky TI - To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 547 EP - 572 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/ LA - ru ID - CMFD_2018_64_3_a3 ER -
%0 Journal Article %A N. D. Kopachevsky %T To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 547-572 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/ %G ru %F CMFD_2018_64_3_a3
N. D. Kopachevsky. To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 547-572. http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a3/
[1] M. S. Agranovich,, “Spectral problems for second-order strongly elliptic systems in domains with smooth and nonsmooth boundary”, Progr. Math. Sci., 57:5 (347) (2002), 3–78 (in Russian) | DOI | MR | Zbl
[2] N. D. Kopachevsky, Abstract Green Formula and Some Its Applications, FORMA, Simferopol', 2016 (in Russian)
[3] N. D. Kopachevsky, “On small motions of a system of two viscoelastic fluids contained in a fixed vessel”, Dynam. Syst., 7(35):1–2 (2017), 109–145 (in Russian)
[4] N. D. Kopachevsky, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian)
[5] N. D. Kopachevsky, E. V. Semkina, “Formulas for orthoprojectors related to the problem on small motions of three viscoelastic fluids contained in a fixed vessel”, Tavricheskiy Bull. Inform. Math., 2017, no. 2(35), 48–61 (in Russian)
[6] S. G. Kreyn, Linear Differential Equations in a Banach Space, Nauka, Moscow, 1967 (in Russian)
[7] A. I. Miloslavskiy, Spectral analysis of small oscillations of a viscoelastic fluid in an open container, Dep. manuscript No. 1221, Inst. Math. Ukr. Acad. Sci., Kiev, 1989 (in Russian)
[8] Agranovich M. S., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl
[9] Azizov T. Ya., Kopachevskii N. D., Orlova L. D., “Evolution and spectral problems related to small motions of viscoelastic fluid”, Am. Math. Soc. Transl., 199 (2000), 1–24 | MR | Zbl
[10] Eirich F. R., Rheology. Theory and applications, Academic Press, New York, 1956 | MR | Zbl
[11] Galiardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 284–305 | MR
[12] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkhauser, Basel–Boston–Berlin, 2001 | MR | Zbl
[13] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonselfadjoint problems for viscous fluid, Birkhauser, Basel–Boston–Berlin, 2003 | MR | Zbl
[14] Miloslavskii A. I., “Stability of certain classes of evolution equations”, Sib. Math. J., 26:5 (1985), 723–735 | DOI | MR
[15] Miloslavskii A. I., “Stability of a viscoelastic isotropic medium”, Sov. Phys. Dokl., 33 (1988), 300 | MR
[16] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl