On the theory of topological radicals
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 490-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we review main directions and results of the theory of topological radicals. We consider applications to different problems in the theory of operators and Banach algebras.
@article{CMFD_2018_64_3_a2,
     author = {E. Kissin and Yu. V. Turovskii and V. S. Shulman},
     title = {On the theory of topological radicals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {490--546},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a2/}
}
TY  - JOUR
AU  - E. Kissin
AU  - Yu. V. Turovskii
AU  - V. S. Shulman
TI  - On the theory of topological radicals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 490
EP  - 546
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a2/
LA  - ru
ID  - CMFD_2018_64_3_a2
ER  - 
%0 Journal Article
%A E. Kissin
%A Yu. V. Turovskii
%A V. S. Shulman
%T On the theory of topological radicals
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 490-546
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a2/
%G ru
%F CMFD_2018_64_3_a2
E. Kissin; Yu. V. Turovskii; V. S. Shulman. On the theory of topological radicals. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 490-546. http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a2/

[1] V. A. Andrunakievich, “To the definition of a radical of a ring”, Bull. Acad. Sci. USSR. Ser. Math., 16:3 (1952), 217–224 (in Russian) | MR | Zbl

[2] V. A. Andrunakievich, Yu. M. Ryabukhin, Radicals of Algebras and Structural Theory, Nauka, Moscow, 1979 (in Russian)

[3] E. C. Golod, “On nil algebras and finite-approximable $p$-groups”, Bull. Acad. Sci. USSR. Ser. Math., 28:2 (1964), 273–276 (in Russian) | MR | Zbl

[4] N. Dunford, J. Schwartz, Linear Operators, v. 1, IL, Moscow, 1962, (Russian translation)

[5] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings Close to Associative, Nauka, Moscow, 1978 (in Russian) | MR

[6] E. I. Zel'manov, “On Engel Lie-algebras”, Rep. Acad. Sci. USSR, 292:2 (1987), 265–268 (in Russian) | MR | Zbl

[7] A. G. Kurosh, “Radicals of rings and algebras”, Math. Digest, 33(75):1 (1953), 13–26 (in Russian) | MR | Zbl

[8] V. I. Lomonosov, “Invariant subspaces for the family of operators which commute with a completely continuous operator”, Funct. Anal. Appl., 7:3 (1973), 55–56 (in Russian) | MR | Zbl

[9] Yu. V. Turovskii, “On spectral properties of some Lie-subalgebras and spectral radius of subsets in Banach algebras”, Spectr. Theor. Oper. Appl., 1985, no. 6, 144–181 (in Russian)

[10] Yu. V. Turovskii, B. C. Shul'man, “Radicals in Banach algebras and some problems of the theory of radical Banach algebras”, Funct. Anal. Appl., 35:4 (2001), 88–91 (in Russian) | DOI | MR | Zbl

[11] Yu. V. Turovskii, B. C. Shul'man, “Topological radicals and mutual spectral radius”, Funct. Anal. Appl., 46:4 (2012), 61–82 (in Russian) | DOI | MR | Zbl

[12] B. C. Shul'man, “On invariant subspaces of Volterra operators”, Funct. Anal. Appl., 18:2 (1984), 85–86 (in Russian) | MR | Zbl

[13] Albert A. A., “The radical of a non-associative algebra”, Bull. Am. Math. Soc., 48 (1942), 891–897 | DOI | MR | Zbl

[14] Alexander J. C., “Compact Banach algebras”, Proc. London Math. Soc. (3), 18 (1968), 1–18 | DOI | MR | Zbl

[15] Amitsur S. A., “A general theory of radicals, I: Radicals in complete lattices”, Amer. J. Math., 74 (1952), 774–786 | DOI | MR | Zbl

[16] Amitsur S. A., “A general theory of radicals, II: Rings and bicategories”, Amer. J. Math., 76:1 (1954), 100–125 | DOI | MR | Zbl

[17] Amitsur S. A., “A general theory of radicals, III: Applications”, Amer. J. Math., 76:1 (1954), 126–136 | DOI | MR | Zbl

[18] Andreolas G., Anoussis M., Topological radicals of nest algebras, 10 Oct. 2016, arXiv: 1608.05857v2[math.OA] | MR

[19] Argiros S. A., Haydon R., “A hereditarily indecomposable $L_\infty$-space that solves the scalar-plus-compact problem”, Acta Math., 206 (2011), 1–54 | DOI | MR

[20] Aupetit B., Propriétés spectrales des algèbres de Banach, Springer, Berlin, 1979 | MR

[21] Aupetit B., Primer to spectral theory, Springer, N.Y., 1991 | MR

[22] Aupetit B., Mathieu M., “The continuity of Lie homomorphisms”, Stud. Math., 138 (2000), 193–199 | MR | Zbl

[23] Baer R., “Radical ideals”, Amer. J. Math., 65 (1943), 537–568 | DOI | MR | Zbl

[24] Barnes B. A., Murphy G. J., Smyth M. R. F., West T. T., Riesz and Fredholm theory in Banach algebras, Pitman Publ. Inc., Boston, 1982 | MR | Zbl

[25] Berger M. A., Wang Y., “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[26] Bonsall F. F., “Operators that act compactly on an algebra of operators”, Bull. London Math. Soc., 1 (1969), 163–170 | DOI | MR | Zbl

[27] Brown L. G., Douglas R. G., Fillmore P. A., “Unitary equivalence modulo the compact operators and extensions of $C^*$-algebras”, Proc. of Conf. on Operator Theory, Halifax, Nova Scotia, 1973, 58–128 | DOI | MR | Zbl

[28] Brown F., McCoy N. H., “Some theorems on groups with applications to ring theory”, Trans. Am. Math. Soc., 69 (1950), 302–311 | DOI | MR | Zbl

[29] Burlando L., “Spectral continuity in some Banach algebras”, Rocky Mountain J. Math., 23 (1993), 17–39 | DOI | MR | Zbl

[30] Curto R. E., “Spectral theory of elementary operators”, Elementary operators and applications, World Sci. Publ., Singapour–New Jersey–London, 1992, 3–54 | MR

[31] Davidson K. R., $C^*$-algebras by examples, Am. Math. Soc., Providence, 1996 | MR | Zbl

[32] Defant A., Floret K., Tensor norms and operator ideals, Elsevier, Amsterdam, 1993 | MR

[33] Divinsky N. J., Rings and radicals, Allen and Unwin, London, 1965 | MR | Zbl

[34] Dixmier J., Les $C^*$-algébres et leur reprèsentations, Gauthier-Villars, Paris, 1964 | MR | Zbl

[35] Dixon P. G., “A Jacobson-semisimple Banach algebra with a dense nil subalgebra”, Colloq. Math., 37 (1977), 81–82 | DOI | MR | Zbl

[36] Dixon P. G., “Topologically nilpotent Banach algebras and factorization”, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 329–341 | DOI | MR | Zbl

[37] Dixon P. G., “Topologically irreducible representations and radicals in Banach algebras”, Proc. London Math. Soc. (3), 74 (1997), 174–200 | DOI | MR | Zbl

[38] Dixon P. G., Müller V., “A note on topologically nilpotent Banach algebras”, Stud. Math., 102 (1992), 269–275 | DOI | MR | Zbl

[39] Dixon P. G., Willis G. A., “Approximate identities in extensions of topologically nilpotent Banach algebras”, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 45–52 | DOI | MR | Zbl

[40] Feldman I., Krupnik N., “On the continuity of the spectrum in certain Banach algebras”, Integral Equ. Operator Theory, 38 (2000), 284–301 | DOI | MR | Zbl

[41] Gardner B. J., Wieland R., Radical theory of rings, Marcel Dekker Inc., New York, 2004 | MR | Zbl

[42] Gray M., A radical approach to algebra, Addison-Wesley Publ. Comp., Massachusetts, 1970 | MR | Zbl

[43] Guinand P. G., “On quasinilpotent semigroups of operators”, Proc. Am. Math. Soc., 86 (1982), 485–486 | DOI | MR | Zbl

[44] Halmos P., Hilbert space problem book, Van Nostrand, Toronto–London, 1967 | MR | Zbl

[45] Hayman W. K., Kennedy C. B., Subharmonic functions, v. 1, Academic Press, London–New York–San Francisko, 1976 | MR | Zbl

[46] Jacobson N., “The radical and semi simplicity for arbitrary rings”, Am. J. Math., 67 (1945), 300–320 | DOI | MR | Zbl

[47] Jungers R., Joint spectral radius, theory and applications, Springer, Berlin, 2009 | MR

[48] Kennedy M., Shulman V. S., Turovskii Yu. V., “Invariant subspaces of subgraded Lie algebras of compact operators”, Integral Equ. Operator Theory, 63 (2009), 47–93 | DOI | MR | Zbl

[49] Kissin E., Shulman V. S., Turovskii Yu. V., “Banach Lie algebras with Lie subalgebras of finite codimension have Lie ideals”, J. London Math. Soc. (2), 80 (2009), 603–626 | DOI | MR | Zbl

[50] Kissin E., Shulman V. S., Turovskii Yu. V., “Topological radicals and Frattini theory of Banach Lie algebras”, Integral Equ. Operator Theory, 74 (2012), 51–121 | DOI | MR | Zbl

[51] Köthe G., “Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollstandig reduzibel ist”, Math. Z., 32 (1930), 161–186 | DOI | MR | Zbl

[52] Köthe G., Topological vector spaces, v. I, Spinger, New York, 1969 | MR

[53] Kozyakin V., An annotated bibliography on convergence of matrix products and the theory of convergence of the joint/generalized spectral radius, Preprint, Inst. Inform. Transmission Prob., 2013

[54] Kusuda M., “A characterization of scattered $C^*$-algebras and its applications to $C^*$-crossed products”, J. Operator Theory, 63:2 (2010), 417–424 | MR | Zbl

[55] Lebow A., Schechter M., “Semigroups of operators and measures of noncompactness”, J. Funct. Anal., 7 (1971), 1–26 | DOI | MR | Zbl

[56] Levitzki A., “On the radical of a general ring”, Bull. Am. Math. Soc., 43 (1943), 462–466 | DOI | MR

[57] Morris I. D., The generalized Berger–Wang formula and the spectral radius of linear cocycles, Preprint, 16 Jun. 2009, arXiv: 0906.2915v1[math.DS] | MR

[58] Newburgh J. D., “The variation of spectra”, Duke Math. J., 18 (1951), 165–176 | DOI | MR | Zbl

[59] Palacios A. R., “The uniqueness of the complete norm topology in complete normed nonassociative algebras”, J. Funct. Anal., 60 (1985), 1–15 | DOI | MR | Zbl

[60] Peng C., Turovskii Yu., “Topological radicals, VI. Scattered elements in Banach, Jordan, and associative algebras”, Stud. Math., 235 (2016), 171–208 | MR | Zbl

[61] Peters J. R., Wogen R. W., “Commutative radical operator algebras”, J. Operator Theory, 42 (1999), 405–424 | MR | Zbl

[62] Pietsch A., Operator ideals, Veb Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR | Zbl

[63] Pietsch A., History of Banach spaces and linear operators, Birkhauser, Boston, 2007 | MR | Zbl

[64] Protasov V. Yu., “The generalized joint spectral radius. A geometric approach”, Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl

[65] Radjavi H., Rosenthal P., Simultaneous triangularization, Springer, N.Y., 2000 | MR | Zbl

[66] Read C. J., “Quasinilpotent operators and the invariant subspace problem”, J. London Math. Soc. (2), 56 (1997), 595–606 | DOI | MR | Zbl

[67] Ringrose J. R., “On some algebras of operators”, Proc. London Math. Soc., 15 (1965), 61–83 | DOI | MR | Zbl

[68] Rota G.-C., Strang W. G., “A note on the joint spectral radius”, Indag. Math., 22 (1960), 379–381 | DOI | MR

[69] Shulman T., Continuity of spectral radius and type I $C^*$-algebras, arXiv: ; Proc. Am. Math. Soc., 147:2 (2019), 641–646 1707.08848 | MR | Zbl

[70] Shulman V. S., Turovskii Yu. V., “Joint spectral radius, operator semigroups and a problem of a Wojtynski”, J. Funct. Anal., 177 (2000), 383–441 | DOI | MR | Zbl

[71] Shulman V. S., Turovskii Yu. V., “Formulae for joint spectral radii of sets of operators”, Stud. Math., 149 (2002), 23–37 | DOI | MR | Zbl

[72] Shulman V. S., Turovskii Yu. V., “Invariant subspaces of operator Lie algebras and Lie algebras with compact adjoint action”, J. Funct. Anal., 223 (2005), 425–508 | DOI | MR | Zbl

[73] Shulman V. S., Turovskii Yu. V., “Topological radicals, I. Basic properties, tensor products and joint quasinilpotence”, Banach Center Publ., 67 (2005), 293–333 | DOI | MR | Zbl

[74] Shulman V. S., Turovskii Yu. V., “Topological radicals, II. Applications to the spectral theory of multiplication operators”, Oper. Theory Adv. Appl., 212 (2010), 45–114 | MR

[75] Shulman V. S., Turovskii Yu. V., “Topological radicals, V. From algebra to spectral theory”, Oper. Theory Adv. Appl., 233 (2014), 171–280 | DOI | MR | Zbl

[76] Szász F. A., Radicals of rings, Akadémiai Kiadó, Budapest, 1981

[77] Turovskii Yu. V., “Volterra semigroups have invariant subspaces”, J. Funct. Anal., 182 (1999), 313–323 | DOI | MR

[78] Vala K., “On compact sets of compact operators”, Ann. Acad. Sci. Fenn. Math., 351 (1964), 1–8 | MR

[79] Vesentini E., “On the subharmonicity of the spectral radius”, Boll. Unione Mat. Ital. (9), 4 (1968), 427–429 | MR

[80] Willis G., “Compact approximation property does not imply approximation property”, Stud. Math., 103 (1992), 99–108 | DOI | MR | Zbl

[81] Wojtynski W., “A note on compact Banach–Lie algebras of Volterra type”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 26:2 (1978), 105–107 | MR | Zbl

[82] Wojtynski W., “On the existence of closed two-sided ideals in radical Banach algebras with compact elements”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 26:2 (1978), 109–113 | MR | Zbl

[83] Wojtynski W., “Quasinilpotent Banach–Lie algebras are Baker–Campbell–Hausdorff”, J. Funct. Anal., 153 (1998), 405–413 | DOI | MR | Zbl

[84] Zemanek J., “Spectral characterization of two-sided ideals in Banach algebras”, Stud. Math., 67 (1980), 1–12 | DOI | MR | Zbl