Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_3_a1, author = {D. A. Zakora}, title = {Operator approach to the problem on small motions of an ideal relaxing fluid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {459--489}, publisher = {mathdoc}, volume = {64}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a1/} }
TY - JOUR AU - D. A. Zakora TI - Operator approach to the problem on small motions of an ideal relaxing fluid JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 459 EP - 489 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a1/ LA - ru ID - CMFD_2018_64_3_a1 ER -
D. A. Zakora. Operator approach to the problem on small motions of an ideal relaxing fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 459-489. http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a1/
[1] V. A. Avakyan, “Asymptotic distribution of the spectrum of a linear pencil perturbed by an analytic operator-function”, Funct. Anal. Appl., 12:2 (1978), 66–67 (in Russian) | MR | Zbl
[2] Yu. M. Berezanskiy, Expansion in Eigenfunctions of Self-Adjoint Operators, Naukova dumka, Kiev, 1965 (in Russian)
[3] M. Sh. Birman, M. Z. Solomyak, “Asymptotics of the spectrum of differential equations”, Totals Sci. Tech. Ser. Math. Anal., 14, 1977, 5–58 (in Russian) | MR | Zbl
[4] V. V. Vlasov, N. A. Rautian, Spectral Analysis of Functional Differential Equations, MAKS Press, Moscow, 2016 (in Russian)
[5] D. A. Zakora, “Operator approach to the Ilyushin model for a viscoelastic body of parabolic type”, Contemp. Math. Fundam. Directions, 57, 2015, 31–64 (in Russian)
[6] D. A. Zakora, “Exponential stability of one semigroup and applications”, Math. Notes, 103:5 (2018), 702–719 (in Russian) | DOI | MR | Zbl
[7] V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, Contemp. Math. Fundam. Directions, 31, 2009, 3–144 (in Russian) | MR
[8] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972, (Russian translation)
[9] N. D. Kopachevsky, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian)
[10] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian)
[11] A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian)
[12] A. I. Markushevich, Theory of Analytic Functions, v. 1, Nauka, Moscow, 1967 (in Russian) | MR
[13] M. B. Orazov, Some questions of spectral theory of nonself-adjoint operators and related problems of mechanics, Doctoral Thesis, Ashkhabad, 1982 (in Russian)
[14] G. V. Radzievskiy, Quadratic pencil of operators, Preprint, Kiev, 1976 (in Russian) | MR
[15] Birman M. Sh., Solomjak M. Z., Spectral theory of self-adjoint operators in Hilbert space, D. Reidel Publ. Co., Dordrecht–Boston–Lancaser–Tokyo, 1986 | MR
[16] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, v. 1, Birkhäuser, Basel–Boston–Berlin, 1990 | Zbl
[17] Goldstein J. A., Semigroups of linear operators and applications, Oxford University Press, New York, 1989 | MR
[18] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonself-adjoint problems for viscous fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR | Zbl
[19] Ralston J. V., “On stationary modes in inviscid rotating fluids”, J. Math. Anal. Appl., 44 (1973), 366–383 | DOI | MR | Zbl