Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_3_a0, author = {S. A. Buterin}, title = {Inverse spectral problem for integrodifferential {Sturm--Liouville} operators with discontinuity conditions}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {427--458}, publisher = {mathdoc}, volume = {64}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a0/} }
TY - JOUR AU - S. A. Buterin TI - Inverse spectral problem for integrodifferential Sturm--Liouville operators with discontinuity conditions JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 427 EP - 458 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a0/ LA - ru ID - CMFD_2018_64_3_a0 ER -
%0 Journal Article %A S. A. Buterin %T Inverse spectral problem for integrodifferential Sturm--Liouville operators with discontinuity conditions %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 427-458 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a0/ %G ru %F CMFD_2018_64_3_a0
S. A. Buterin. Inverse spectral problem for integrodifferential Sturm--Liouville operators with discontinuity conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 64 (2018) no. 3, pp. 427-458. http://geodesic.mathdoc.fr/item/CMFD_2018_64_3_a0/
[1] S. A. Buterin, “Inverse spectral problem of restoration of a convolution operator perturbed by a one-dimensional operator”, Math. Notes, 80:5 (2006), 668–682 (in Russian) | DOI | MR | Zbl
[2] S. A. Buterin, “On restoration of a convolutional perturbation of the Sturm–Liouville operator from the spectrum”, Differ. Equ., 46:1 (2010), 146–149 (in Russian) | MR | Zbl
[3] S. A. Buterin, “Inverse spectral problem for integrodifferential operators with discontinuity condition”, Mathematics. Mechanics, 17, Saratov Univ., Saratov, 2015, 9–12 (in Russian)
[4] S. A. Buterin, “Inverse problem for a second-order integrodifferential operator with discontinuity condition”, Contemp. Probl. Funct. Theory Appl., Nauchnaya kniga, Saratov, 2018, 70–73 (in Russian)
[5] N. Dunford, J. Schwartz, Linear Operators. General Theory, IL, Moscow, 1962, (Russian translation)
[6] M. S. Eremin, “Inverse problem for a second-order integrodifferential equation with a singularity”, Differ. Equ., 24:2 (1988), 350–351 (in Russian) | Zbl
[7] K. Yosida, Functional Analysis, Mir, Moscow, 1967, (Russian translation)
[8] Yu. V. Kuryshova, “Inverse spectral problem for integrodifferential operators”, Math. Notes, 81:6 (2007), 855–866 (in Russian) | DOI | MR | Zbl
[9] B. Ya. Levin, Distribution of Roots of Entire Functions, Gostekhizdat, Moscow, 1956 (in Russian)
[10] B. M. Levitan, I. S. Sargsyan, Sturm–Liouville and Dirac Operators, Nauka, Moscow, 1988 (in Russian) | MR
[11] M. M. Malamud, “On some inverse problems”, Boundary-value Problems of Mathematical Physics, Naukova Dumka, Kiev, 1979, 116–124 (in Russian)
[12] V. A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova dumka, Kiev, 1977 (in Russian)
[13] I. I. Privalov, Introduction to the Theory of Functions of Complex Variable, Fizmatgiz, Moscow, 1977 (in Russian) | MR
[14] V. A. Yurko, “Inverse problem for first-order integrodifferential operators”, Functional Analysis, Ul'yanovsk, 1984, 144–151 (in Russian) | Zbl
[15] V. A. Yurko, “Inverse problem for integrodifferential operators”, Math. Notes, 50:5 (1991), 134–146 (in Russian) | MR | Zbl
[16] V. A. Yurko, “On boundary-value problems with discontinuity conditions inside the interval”, Differ. Equ., 36:8 (2000), 1139–1140 (in Russian) | MR | Zbl
[17] V. A. Yurko, “Inverse problem for differential systems on a finite interval in the case of multiple roots of the characteristic polynomial”, Differ. Equ., 41:6 (2005), 781–786 (in Russian) | MR | Zbl
[18] V. A. Yurko, Introduction to the Theory of Inverse Spectral Problems, Fizmatlit, Moscow, 2007 (in Russian)
[19] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, AMS, Providence, 1988 | MR | Zbl
[20] Bondarenko N. P., “An inverse problem for an integro-differential operator on a star-shaped graph”, Math. Methods Appl. Sci., 41:4 (2018), 1697–1702 | DOI | MR | Zbl
[21] Bondarenko N., Buterin S., “On recovering the Dirac operator with an integral delay from the spectrum”, Results Math., 71:3–4 (2017), 1521–1529 | DOI | MR | Zbl
[22] Buterin S. A., “On an inverse spectral problem for a convolution integro-differential operator”, Results Math., 50:3–4 (2007), 173–181 | DOI | MR
[23] Buterin S. A., “On inverse spectral problems for first-order integro-differential operators with discontinuities”, Appl. Math. Lett., 78 (2018), 65–71 | DOI | MR | Zbl
[24] Buterin S. A., Choque Rivero A. E., “On inverse problem for a convolution integro-differential operator with Robin boundary conditions”, Appl. Math. Lett., 48 (2015), 150–155 | DOI | MR | Zbl
[25] Buterin S. A., Sat M., “On the half inverse spectral problem for an integro-differential operator”, Inverse Probl. Sci. Eng., 25:10 (2017), 1508–1518 | DOI | MR | Zbl
[26] Buterin S. A., Vasiliev S. V., “On uniqueness of recovering the convolution integro-differential operator from the spectrum of its non-smooth one-dimensional perturbation”, Bound. Value Probl., 2018 (2018), No 55 | DOI | MR
[27] Freiling G., Yurko V. A., Inverse Sturm–Liouville problems and their applications, NOVA Science Publ., New York, 2001 | MR | Zbl
[28] Freiling G., Yurko V. A., “Inverse spectral problems for singular non-selfadjoint differential operators with discontinuities in an interior point”, Inverse Problems, 18 (2002), 757–773 | DOI | MR | Zbl
[29] Hald O. H., “Discontinuous inverse eigenvalue problems”, Commun. Pure Appl. Math., 37 (1984), 539–577 | DOI | MR | Zbl
[30] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1988 | MR | Zbl
[31] Ignatiev M., “On an inverse spectral problem for one integro-differential operator of fractional order”, J. Inverse Ill-Posed Probl., 27:1 (2019), 17–23 | DOI | MR
[32] Ignatyev M., “On an inverse spectral problem for the convolution integro-differential operator of fractional order”, Results Math., 73:1 (2018), Article 34 | DOI | MR
[33] Krueger R. J., “Inverse problems for nonabsorbing media with discontinuous material properties”, J. Math. Phys., 23:3 (1982), 396–404 | DOI | MR | Zbl
[34] Kuryshova Yu. V., Shieh C.-T., “An inverse nodal problem for integro-differential operators”, J. Inverse Ill-Posed Probl., 18:4 (2010), 357–369 | DOI | MR | Zbl
[35] Lakshmikantham V., Rama Mohana Rao M., Theory of integro-differential equations, Gordon Breach Sci. Publ., Singapore, 1995 | MR | Zbl
[36] Manafov M. Dzh., “An inverse spectral problem for Sturm–Liouville operator with integral delay”, Electron. J. Differ. Equ., 2017:12 (2017), 1–8 | MR
[37] Shepelsky D. G., “The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions”, Spectral Operator Theory and Related Topics, Am. Math. Soc., Providence, 1994, 209–232 | DOI | MR | Zbl
[38] Shieh C.-T., Yurko V. A., “Inverse nodal and inverse spectral problems for discontinuous boundary value problems”, J. Math. Anal. Appl., 347 (2008), 266–272 | DOI | MR | Zbl
[39] Wang Y.-P., “Inverse problems for Sturm–Liouville operators with interior discontinuities and boundary conditions dependent on the spectral parameter”, Math. Methods Appl. Sci., 36:7 (2013), 857–868 | DOI | MR | Zbl
[40] Wang Y. P., “Inverse problems for discontinuous Sturm–Liouville operators with mixed spectral data”, Inverse Probl. Sci. Eng., 23:7 (2015), 1180–1198 | DOI | MR | Zbl
[41] Wang Y.-P., Wei G., “The uniqueness for Sturm–Liouville problems with aftereffect”, Acta Math. Sci., 32A:6 (2012), 1171–1178 | MR | Zbl
[42] Wang Y. P., Yurko V. A., “On the inverse nodal problems for discontinuous Sturm–Liouville operators”, J. Differ. Equ., 260:5 (2016), 4086–4109 | DOI | MR | Zbl
[43] Yang C. F., “Inverse nodal problems of discontinuous Sturm–Liouville operator”, J. Differ. Equ., 254:4 (2013), 1992–2014 | DOI | MR | Zbl
[44] Yang C.-F., Yang X.-P., “An interior inverse problem for the Sturm–Liouville operator with discontinuous conditions”, Appl. Math. Lett., 22:9 (2009), 1315–1319 | DOI | MR | Zbl
[45] Yurko V. A., “Integral transforms connected with discontinuous boundary value problems”, Integral Transforms Spec. Funct., 10:2 (2000), 141–164 | DOI | MR | Zbl
[46] Yurko V. A., Inverse spectral problems for differential operators and their applications, Gordon Breach Sci. Publ., Amsterdam, 2000 | MR | Zbl
[47] Yurko V. A., Method of spectral mappings in the inverse problem theory, VSP, Utrecht, 2002 | MR | Zbl
[48] Yurko V. A., “An inverse spectral problems for integro-differential operators”, Far East J. Math. Sci., 92:2 (2014), 247–261 | MR | Zbl
[49] Yurko V. A., “Inverse problems for second order integro-differential operators”, Appl. Math. Lett., 74 (2017), 1–6 | DOI | MR | Zbl
[50] Yurko V. A., “Inverse spectral problems for first order integro-differential operators”, Bound. Value Probl., 2017 (2017), No 98 | DOI | MR | Zbl