Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a7, author = {V. A. Popov}, title = {Estimates of solutions of elliptic differential-difference equations with degeneration}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {131--147}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a7/} }
TY - JOUR AU - V. A. Popov TI - Estimates of solutions of elliptic differential-difference equations with degeneration JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 131 EP - 147 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a7/ LA - ru ID - CMFD_2018_64_1_a7 ER -
V. A. Popov. Estimates of solutions of elliptic differential-difference equations with degeneration. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 131-147. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a7/
[1] A. V. Bitsadze, A. A. Samarskii, “On some simplest generalizations of linear elliptic boundary-value problems”, Dokl. AN SSSR, 185:4 (1969), 739–740 (in Russian) | MR | Zbl
[2] E. M. Varfolomeev, “On some properties of elliptic and parabolic functional differential operators arising in nonlinear optics”, Sovrem. mat. Fundam. napravl., 21, 2007, 5–36 (in Russian) | MR | Zbl
[3] M. I. Vishik, “Boundary-value problems for elliptic equations degenerating on the boundary of the domain”, Mat. sb., 35:3 (1954), 513–568 (in Russian) | MR | Zbl
[4] N. Dunford, J. Schwartz, Linear Operators, Russian translation, v. 2, Mir, Moscow, 1966
[5] E. P. Ivanova, “Continuous dependence of solutions of boundary-value problems for differential-difference equations on shifts of the argument”, Sovrem. mat. Fundam. napravl., 59, 2016, 74–96 (in Russian)
[6] A. G. Kamenskiy, “Boundary-value problems for equations with formally symmetric differential-difference operators”, Diff. uravn., 12:12 (1976), 815–824 (in Russian) | MR
[7] G. A. Kamenskii, A. D. Myshkis, “To the setting of boundary-value problems for differential equations with deviating argument”, Diff. uravn., 10:3 (1974), 409–418 (in Russian) | MR | Zbl
[8] T. Kato, Perturbation Theory for Linear Operators, Russian translation, Mir, Moscow, 1972
[9] M. V. Keldysh, “On some cases of degeneration of elliptic equations on the boundary of the domain”, Dokl. AN SSSR, 77 (1951), 181–183 (in Russian)
[10] S. G. Kreyn, Linear Equations in Banach Space, Nauka, Moscow, 1971 (in Russian)
[11] J.-L. Lions, E. Magenes, Nonhomogeneous Boundary-Value Problems and Their Applications, Russian translation, Mir, Moscow, 1971
[12] V. P. Mikhaylov, Differential Equations with Partial Derivatives, Nauka, Moscow, 1976 (in Russian)
[13] A. B. Muravnik, “Asymptotic properties of solutions of the Dirichlet problem in a half-plane for some differential-difference elliptic equations”, Mat. zametki, 100:4 (2016), 566–576 (in Russian) | DOI | MR | Zbl
[14] “Second-order equations with nonnegative characteristic form”, Itogi Nauki. Ser. Mat. Mat. Anal., 1969, 1971, 7–252 (in Russian) | MR | Zbl
[15] V. A. Popov, “Traces of generalized solutions of elliptic differential-difference equations with degeneration”, Sovrem. mat. Fundam. napravl., 62, 2016, 124—139 (in Russian)
[16] V. A. Popov, A. L. Skubachevskii, “A priori estimates for elliptic differential-difference operators with degeneration”, Sovrem. mat. Fundam. napravl., 36, 2010, 125–142 (in Russian) | MR | Zbl
[17] V. A. Popov, A. L. Skubachevskii, “Smoothness of generalized solutions of elliptic differential-difference equations with degeneration”, Sovrem. mat. Fundam. napravl., 39, 2011, 130–140 (in Russian) | MR
[18] L. E. Rossovskii, “Coercivity of functional differential equations”, Mat. zametki, 59:1 (1996), 103–113 (in Russian) | DOI | MR | Zbl
[19] L. E. Rossovskii, “Elliptic functional differential equations with contraction and dilatation of arguments of the unknown function”, Sovrem. mat. Fundam. napravl., 54, 2014, 3–138 (in Russian)
[20] A. L. Skubachevskii, “Boundary-value problems for elliptic functional differential equations and their applications”, Diff. uravn., 19:3 (1983), 457–470 (in Russian) | MR
[21] A. L. Skubachevskii, “Elliptic differential-difference equations with degeneration”, Tr. Mosk. mat. ob-va, 59, 1997, 240–285 (in Russian)
[22] A. L. Skubachevskii, “Nonlocal elliptic boundary-value problems with degeneration”, Usp. mat. nauk, 71:5 (2016), 3–112 (in Russian) | DOI | MR | Zbl
[23] O. V. Solonukha, “On one class of essentially nonlinear elliptic differential-difference equations”, Tr. MIAN, 283, 2013, 233–251 (in Russian) | MR | Zbl
[24] A. L. Tasevich, “Smoothness of generalized solutions of the Dirichlet problem for strongly elliptic functional differential equations with orthotropic contractions”, Sovrem. mat. Fundam. napravl., 58, 2015, 153–165 (in Russian)
[25] G. Fichera, “Boundary problems in differential equations”, Matematika, 7:6 (1963), 99–121, (Russian translation)
[26] Kamenskii G. A., Myshkis A. D., “Formulation of boundary-value problems for differential equations with deviating arguments containing several highest-order terms”, Differ. Equ., 10 (1975), 302–309 | MR | Zbl
[27] Popov V. A., Skubachevskii A. L., “On smoothness of solutions of some elliptic functional-differential equations with degenerations”, Russ. J. Math. Phys., 20:4 (2013), 492–507 | DOI | MR | Zbl
[28] Skubachevskii A. L., “The first boundary-value problem for strongly elliptic differential-difference equations”, J. Differ. Equ., 63:3 (1986), 332–361 | DOI | MR
[29] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl
[30] Solonukha O. V., “On a class of essentially nonlinear elliptic differential-difference equations”, Proc. Steklov Inst. Math., 283, 2013, 226–244 | DOI | MR | Zbl
[31] Solonukha O. V., “On nonlinear and quasiliniear elliptic functional differential equations”, Discrete Contin. Dyn. Syst., 9:3 (2016), 869–893 | DOI | MR | Zbl
[32] Varfolomeev E. M., “On some properties of elliptic and parabolic functional differential operators arising in nonlinear optics”, J. Math. Sci., 153:5 (2008), 649–682 | DOI | MR | Zbl