Schlesinger's equations for upper triangular matrices and their solutions
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 86-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider explicit integral expressions of hypergeometric and hyperelliptic types for solutions of Schlesinger's equations in classes of upper triangular matrices with eigenvalues that produce arithmetic progressions with the same difference. These integral representations extend and generalize earlier known results.
@article{CMFD_2018_64_1_a5,
     author = {V. P. Lexin},
     title = {Schlesinger's equations for upper triangular matrices and their solutions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {86--97},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/}
}
TY  - JOUR
AU  - V. P. Lexin
TI  - Schlesinger's equations for upper triangular matrices and their solutions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 86
EP  - 97
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/
LA  - ru
ID  - CMFD_2018_64_1_a5
ER  - 
%0 Journal Article
%A V. P. Lexin
%T Schlesinger's equations for upper triangular matrices and their solutions
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 86-97
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/
%G ru
%F CMFD_2018_64_1_a5
V. P. Lexin. Schlesinger's equations for upper triangular matrices and their solutions. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 86-97. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/

[1] A. A. Bolibrukh, Inverse Problems of Monodromy in Analytical Theory of Differential Equations, MTSNMO, Moscow, 2009 (in Russian)

[2] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Russian translation, Fizmatlit, Moscow, 1963

[3] Aomoto K., “On the structure of integrals of power product of linear functions”, Sci. Papers College Gen. Edu. Univ. Tokyo, 27:2 (1977), 49–61 | MR | Zbl

[4] Aomoto K., “Founctions hyperlogarithmiques et groupes de monodromie unipotens”, Sci. J. Fac. Sci. Univ. Tokyo., 25 (1978), 149–156 | MR | Zbl

[5] Deligne P., Mostow G. D., “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. IHES, 63 (1986), 5–90 | DOI | MR

[6] Dragovich V., Schramchenko V., Algebro-geometric solutions to triangular Schlesinger systems, arXiv: 1604.01820v2[math.AG]

[7] Dubrovin B., Mazzocco M., “On the reductions and classical solutions of the Schlesinger equations”, Differential Equations and Quantum Groups, IRMA, Strasburg, 2007, 157–187 | MR | Zbl

[8] Gontsov R. R., Leksin V. P., “On the reducibility of Schlesinger isomonodromic families”, Analytic Methods of Analysis and Differential Equations: AMADE 2012, Cambridge Sci. Publ., Cambridge, 2014, 21–34 | Zbl

[9] Kapovich M., Millson J., “Quantization of bending deformations of polygons in $\mathbb E^3,$ hypergeometric integrals and the Gassner representation”, Can. Math. Bull., 44:1 (2001), 36–60 | DOI | MR | Zbl

[10] Katz N., Oda T., “On the differentiation of de Rham cohomology classes with respect to parameters”, J. Math. Kyoto Univ., 8 (1968), 199–213 | DOI | MR | Zbl

[11] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Contemp. Math., 78 (1988), 339–363 | DOI | MR | Zbl

[12] Leksin V. P., “Isomonodromy deformations and hypergeometric-type systems”, Painlevé Equations and Related Topics, Walther de Gruyter, Berlin–Boston, 2012, 117–122 | MR

[13] Žoladek H., The Monodromy Group, Birkhäuser, Basel–Boston–Berlin, 2006 | MR | Zbl