Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a5, author = {V. P. Lexin}, title = {Schlesinger's equations for upper triangular matrices and their solutions}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {86--97}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/} }
TY - JOUR AU - V. P. Lexin TI - Schlesinger's equations for upper triangular matrices and their solutions JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 86 EP - 97 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/ LA - ru ID - CMFD_2018_64_1_a5 ER -
V. P. Lexin. Schlesinger's equations for upper triangular matrices and their solutions. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 86-97. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a5/
[1] A. A. Bolibrukh, Inverse Problems of Monodromy in Analytical Theory of Differential Equations, MTSNMO, Moscow, 2009 (in Russian)
[2] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Russian translation, Fizmatlit, Moscow, 1963
[3] Aomoto K., “On the structure of integrals of power product of linear functions”, Sci. Papers College Gen. Edu. Univ. Tokyo, 27:2 (1977), 49–61 | MR | Zbl
[4] Aomoto K., “Founctions hyperlogarithmiques et groupes de monodromie unipotens”, Sci. J. Fac. Sci. Univ. Tokyo., 25 (1978), 149–156 | MR | Zbl
[5] Deligne P., Mostow G. D., “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. IHES, 63 (1986), 5–90 | DOI | MR
[6] Dragovich V., Schramchenko V., Algebro-geometric solutions to triangular Schlesinger systems, arXiv: 1604.01820v2[math.AG]
[7] Dubrovin B., Mazzocco M., “On the reductions and classical solutions of the Schlesinger equations”, Differential Equations and Quantum Groups, IRMA, Strasburg, 2007, 157–187 | MR | Zbl
[8] Gontsov R. R., Leksin V. P., “On the reducibility of Schlesinger isomonodromic families”, Analytic Methods of Analysis and Differential Equations: AMADE 2012, Cambridge Sci. Publ., Cambridge, 2014, 21–34 | Zbl
[9] Kapovich M., Millson J., “Quantization of bending deformations of polygons in $\mathbb E^3,$ hypergeometric integrals and the Gassner representation”, Can. Math. Bull., 44:1 (2001), 36–60 | DOI | MR | Zbl
[10] Katz N., Oda T., “On the differentiation of de Rham cohomology classes with respect to parameters”, J. Math. Kyoto Univ., 8 (1968), 199–213 | DOI | MR | Zbl
[11] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Contemp. Math., 78 (1988), 339–363 | DOI | MR | Zbl
[12] Leksin V. P., “Isomonodromy deformations and hypergeometric-type systems”, Painlevé Equations and Related Topics, Walther de Gruyter, Berlin–Boston, 2012, 117–122 | MR
[13] Žoladek H., The Monodromy Group, Birkhäuser, Basel–Boston–Berlin, 2006 | MR | Zbl