Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a4, author = {I. Capuzzo Dolcetta and F. Leoni and A. Vitolo}, title = {Generalized {Keller--Osserman} conditions for fully nonlinear degenerate elliptic equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {74--85}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/} }
TY - JOUR AU - I. Capuzzo Dolcetta AU - F. Leoni AU - A. Vitolo TI - Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 74 EP - 85 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/ LA - ru ID - CMFD_2018_64_1_a4 ER -
%0 Journal Article %A I. Capuzzo Dolcetta %A F. Leoni %A A. Vitolo %T Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 74-85 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/ %G ru %F CMFD_2018_64_1_a4
I. Capuzzo Dolcetta; F. Leoni; A. Vitolo. Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 74-85. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/
[1] Alarcón S., García-Melián J., Quaas A., “Keller–Ossermann conditions for some elliptic problems with gradient terms”, J. Differ. Equ., 252 (2012), 886–914 | DOI | MR | Zbl
[2] Alarcón S., Quaas A., “Large viscosity solutions for some fully nonlinear equations”, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 1453–1472 | DOI | MR | Zbl
[3] Ambrosio L., Soner H. M., “Level set approach to mean curvature flow in arbitrary codimension”, J. Differ. Geom., 43:4 (1996), 693–737 | DOI | MR | Zbl
[4] Amendola M. E., Galise G., Vitolo A., “Riesz capacity, maximum principle and removable sets of fully nonlinear second order elliptic operators”, Differ. Integral Equ. Appl., 26:7–8 (2013), 845–866 | MR | Zbl
[5] Amendola M. E., Galise G., Vitolo A., “On the uniqueness of blow-up solutions of fully nonlinear elliptic equations”, Discrete Contin. Dyn. Syst., 2013, Suppl., 771–780 | MR | Zbl
[6] Bao J., Ji X., “Necessary and sufficient conditions on solvability for Hessian inequalities”, Proc. Am. Math. Soc., 138 (2010), 175–188 | DOI | MR | Zbl
[7] Bao J., Ji X., “Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations”, J. Differ. Equ., 253 (2012), 2140–2160 | DOI | MR | Zbl
[8] Bernstein S. R., “Sur les equations du calcul des variations”, Ann. Sci. Éc. Norm. Supér. (4), 29 (1912), 431–485 | DOI | MR | Zbl
[9] Birindelli I., Demengel F., Leoni F., Ergodic pairs for singular or degenerate fully nonlinear operators, 07.12.2017, arXiv: 1712.02671[math.AP]
[10] Birindelli I., Galise G., Ishii H., “A family of degenerate elliptic operators: maximum principle and its consequences”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 35:2 (2018), 417–441 | DOI | MR | Zbl
[11] Birindelli I., Galise G., Leoni F., “Liouville theorems for a family of very degenerate elliptic nonlinear operators”, Nonlinear Anal., 161 (2017), 198–211 | DOI | MR | Zbl
[12] Boccardo L., Gallouet T., Vazquez J. L., “Nonlinear elliptic equations in $\mathbb R^N$ without growth restriction on the data”, J. Differ. Equ., 105:2 (1993), 334–363 | DOI | MR | Zbl
[13] Boccardo L., Gallouet T., Vazquez J. L., “Solutions of nonlinear parabolic equations without growth restrictions on the data”, Electron. J. Differ. Equ., 2001:60 (2001), 1–20 | MR
[14] Brezis H., “Semilinear equations in $\mathbb R^n$ without conditions at infinity”, Appl. Math. Optim., 12 (1984), 271–282 | DOI | MR | Zbl
[15] Caffarelli L. A., Cabré X., Fully nonlinear elliptic equations, Am. Math. Soc., Providence, 1995 | MR | Zbl
[16] Caffarelli L. A., Li Y. Y., Nirenberg L., “Some remarks on singular solutions of nonlinear elliptic equations. I”, J. Fixed Point Theory Appl., 5 (2009), 353–395 | DOI | MR | Zbl
[17] Capuzzo Dolcetta I., Leoni F., Porretta A., “Hölder estimates for degenerate elliptic equations with coercive Hamiltonians”, Trans. Am. Math. Soc., 362:9 (2010), 4511–4536 | DOI | MR | Zbl
[18] Capuzzo Dolcetta I., Leoni F., Vitolo A., “Entire subsolutions of fully nonlinear degenerate elliptic equations”, Bull. Inst. Math. Acad. Sin. (N.S.), 9:2 (2014), 147–161 | MR | Zbl
[19] Capuzzo Dolcetta I., Leoni F., Vitolo A., “On the inequality $F(x,D^2u)\geq f(u)+g(u)|Du|^q$”, Math. Ann., 365:1-2 (2016), 423–448 | DOI | MR | Zbl
[20] Crandall M. G., Ishii H., Lions P. L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Am. Math. Soc., 27:1 (1992), 1–67 | DOI | MR | Zbl
[21] D'Ambrosio L., Mitidieri E., “A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities”, Adv. Math., 224 (2010), 967–1020 | DOI | MR | Zbl
[22] Demengel F., Goubet O., “Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations”, Commun. Pure Appl. Anal., 12:2 (2013), 621–645 | MR | Zbl
[23] Diaz G., “A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller–Ossermann condition”, Math. Ann., 353 (2012), 145–159 | DOI | MR | Zbl
[24] Esteban M. G., Felmer P. L., Quaas A., “Super-linear elliptic equations for fully nonlinear operators without growth restrictions for the data”, Proc. Edinb. Math. Soc. (2), 53:1 (2010), 125–141 | DOI | MR | Zbl
[25] Felmer P. L., Quaas A., Sirakov B., “Solvability of nonlinear elliptic equations with gradient terms”, J. Differ. Equ., 254:11 (2013), 4327–4346 | DOI | MR | Zbl
[26] Galise G., Maximum principles, entire solutions and removable singularities of fully nonlinear second order equations, Ph.D. Thesis, Salerno, 2011/2012
[27] Galise G., Vitolo A., “Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity”, Int. J. Differ. Equ., 2011, Article ID 453727 | MR | Zbl
[28] Giga Y., Surface evolution equations. A level set approach, Birkhäuser Verlag, Basel, 2006 | MR | Zbl
[29] Hartman P., Ordinary differential equations, Wiley, New York–London, 1964 | MR | Zbl
[30] Harvey R., Lawson Jr B., Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, 05.03.2013, arXiv: 1303.1117 | MR
[31] Jin Q., Li Y. Y., Xu H., “Nonexistence of positive solutions for some fully nonlinear elliptic equations”, Methods Appl. Anal., 12 (2005), 441–449 | MR | Zbl
[32] Keller J. B., “On solutions of $\Delta u=f(u)$”, Commun. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl
[33] Labutin D. A., “Removable singularities for fully nonlinear elliptic equations”, Arch. Ration. Mech. Anal., 155:3 (2000), 201–214 | DOI | MR | Zbl
[34] Lasry J.-M., Lions P.-L., “Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem”, Math. Ann., 283 (1989), 583–630 | DOI | MR | Zbl
[35] Leoni F., “Nonlinear elliptic equations in $\mathbb R^N$ with “absorbing” zero order terms”, Adv. Differ. Equ., 5 (2000), 681–722 | MR | Zbl
[36] Leoni F., Pellacci B., “Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data”, J. Evol. Equ., 6 (2006), 113–144 | DOI | MR | Zbl
[37] Nagumo M., “Über die differential gleichung $y''=f(x,y,y')$”, Proc. Phys.-Math. Soc. Japan, 19 (1937), 861–866 | MR | Zbl
[38] Oberman A., Silvestre L., “The Dirichlet problem for the convex envelope”, Trans. Am. Math. Soc., 363:11 (2011), 5871–5886 | DOI | MR | Zbl
[39] Osserman R., “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7 (1957), 1141–1147 | DOI | MR
[40] Porretta A., “Local estimates and large solutions for some elliptic equations with absorption”, Adv. Differ. Equ., 9:3–4 (2004), 329–351 | MR | Zbl
[41] Sha J.-P., “Handlebodies and $p$-convexity”, J. Differ. Geom., 25 (1987), 353–361 | DOI | MR | Zbl
[42] Wu H., “Manifolds of partially positive curvature”, Indiana Univ. Math. J., 36 (1987), 525–548 | DOI | MR | Zbl