Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a4, author = {I. Capuzzo Dolcetta and F. Leoni and A. Vitolo}, title = {Generalized {Keller--Osserman} conditions for fully nonlinear degenerate elliptic equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {74--85}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/} }
TY - JOUR AU - I. Capuzzo Dolcetta AU - F. Leoni AU - A. Vitolo TI - Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 74 EP - 85 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/ LA - ru ID - CMFD_2018_64_1_a4 ER -
%0 Journal Article %A I. Capuzzo Dolcetta %A F. Leoni %A A. Vitolo %T Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 74-85 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/ %G ru %F CMFD_2018_64_1_a4
I. Capuzzo Dolcetta; F. Leoni; A. Vitolo. Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 74-85. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/