Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 74-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller–Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.
@article{CMFD_2018_64_1_a4,
     author = {I. Capuzzo Dolcetta and F. Leoni and A. Vitolo},
     title = {Generalized {Keller--Osserman} conditions for fully nonlinear degenerate elliptic equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/}
}
TY  - JOUR
AU  - I. Capuzzo Dolcetta
AU  - F. Leoni
AU  - A. Vitolo
TI  - Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 74
EP  - 85
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/
LA  - ru
ID  - CMFD_2018_64_1_a4
ER  - 
%0 Journal Article
%A I. Capuzzo Dolcetta
%A F. Leoni
%A A. Vitolo
%T Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 74-85
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/
%G ru
%F CMFD_2018_64_1_a4
I. Capuzzo Dolcetta; F. Leoni; A. Vitolo. Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 74-85. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a4/