Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a2, author = {V. V. Vedenyapin and S. Z. Adzhiev and V. V. Kazantseva}, title = {Entropy in the sense of {Boltzmann} and {Poincare,} {Boltzmann} extremals, and the {Hamilton--Jacobi} method in {non-Hamiltonian} context}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {37--59}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/} }
TY - JOUR AU - V. V. Vedenyapin AU - S. Z. Adzhiev AU - V. V. Kazantseva TI - Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 37 EP - 59 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/ LA - ru ID - CMFD_2018_64_1_a2 ER -
%0 Journal Article %A V. V. Vedenyapin %A S. Z. Adzhiev %A V. V. Kazantseva %T Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 37-59 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/ %G ru %F CMFD_2018_64_1_a2
V. V. Vedenyapin; S. Z. Adzhiev; V. V. Kazantseva. Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/