Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a2, author = {V. V. Vedenyapin and S. Z. Adzhiev and V. V. Kazantseva}, title = {Entropy in the sense of {Boltzmann} and {Poincare,} {Boltzmann} extremals, and the {Hamilton--Jacobi} method in {non-Hamiltonian} context}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {37--59}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/} }
TY - JOUR AU - V. V. Vedenyapin AU - S. Z. Adzhiev AU - V. V. Kazantseva TI - Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 37 EP - 59 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/ LA - ru ID - CMFD_2018_64_1_a2 ER -
%0 Journal Article %A V. V. Vedenyapin %A S. Z. Adzhiev %A V. V. Kazantseva %T Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 37-59 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/ %G ru %F CMFD_2018_64_1_a2
V. V. Vedenyapin; S. Z. Adzhiev; V. V. Kazantseva. Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/
[1] S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equation, and the Kac circular model”, Zhurn. vych. mat. i mat. fiz., 51:11 (2011), 2063–2074 (in Russian) | MR | Zbl
[2] S. Adzhiev, V. Vedenyapin, “Entropy in the sense of Boltzmann and Poincare”, Usp. mat. nauk, 69:6 (2014), 45–80 (in Russian) | MR | Zbl
[3] I. S. Arzhanykh, Field of Impulses, Nauka, Tashkent, 1965 (in Russian) | MR
[4] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Nauka, Moscow, 1989 (in Russian)
[5] Ya. G. Batishcheva, V. V. Vedenyapin, “The 2nd law of thermodynamics for chemical kinetics”, Mat. model., 17:8 (2005), 106–110 (in Russian) | MR | Zbl
[6] L. Bol'tsman, “Further investigation of thermal equilibrium between molecules of gas”, Selected Works, Nauka, Moscow, 1984, 125–189 (in Russian)
[7] L. Bol'tsman, “On the relation between the second law of mechanical theory of heat and the probability theory in theorems on thermal equilibrium”, Selected Works, Nauka, Moscow, 1984, 190–235 (in Russian)
[8] A. D. Bryuno, The Limited Three-Body Problem, Nauka, Moscow, 1990 (in Russian) | MR
[9] V. V. Vedenyapin, “Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann's $H$-function”, Usp. mat. nauk, 43:1 (1988), 159–179 (in Russian) | MR | Zbl
[10] V. V. Vedenyapin, Kinetic Theory in the Sense of Maxwell, Boltzmann, and Vlasov, Lecture Notes, MGOU, Moscow, 2005 (in Russian)
[11] V. V. Vedenyapin, “Time averages and Boltzmann extremals”, Dokl. RAN, 422:2 (2008), 161–163 (in Russian) | MR | Zbl
[12] V. V. Vedenyapin, I. V. Mingalev, O. V. Mingalev, “On discrete models of the quantum Boltzmann equation”, Mat. sb., 184:11 (1993), 21–38 (in Russian) | MR | Zbl
[13] V. V. Vedenyapin, M. A. Negmatov, “On topology of stationary solutions of hydrodynamics and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method”, Dokl. RAN, 449:5 (2013), 521–526 (in Russian) | DOI | Zbl
[14] V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Vlasov and Liouville-type equations and their macroscopic, energetic, and hydrodynamics consequences”, Izv. RAN. Ser. Mat., 81:3 (2017), 45–82 (in Russian) | DOI | MR | Zbl
[15] V. V. Vedenyapin, Yu. N. Orlov, “Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation”, Teor. mat. fiz., 121:2 (1999), 307–315 (in Russian) | DOI | MR | Zbl
[16] V. V. Vedenyapin, N. N. Fimin, “The Hamilton–Jacobi method for non-Hamiltonian systems”, Nelin. dinamika, 11:2 (2015), 279–286 (in Russian) | Zbl
[17] V. V. Vedenyapin, N. N. Fimin, “The Hamilton–Jacobi method in non-Hamiltonian context and the hydrodynamical substitution”, Dokl. RAN, 461:2 (2015), 136–139 (in Russian) | DOI | Zbl
[18] A. M. Vershik, I. P. Kornfel'd, Ya. G. Sinai, “General ergodic theory of groups of transformations with invariant measure, I”, Sovrem. probl. mat. Fundam. napravl., 2, 1985, 5–111 (in Russian) | MR | Zbl
[19] A. I. Vol'pert, S. I. Khudyaev, Analysis in classes of discontinuous functions and equations of mathematical physics, Nauka, Moscow, 1975 (in Russian)
[20] A. V. Gasnikov (ed.), Introduction to Mathematical Modelling of Transport Flows, MTSNMO, Moscow, 2013 (in Russian)
[21] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Usp. mat. nauk, 26:3 (1971), 3–51 (in Russian) | MR | Zbl
[22] B. M. Gurevich, A. A. Tempel'man, “On sets of time and spatial averages for continuous functions on the space of configurations”, Usp. mat. nauk, 58:2 (2003), 161–162 (in Russian) | DOI | MR | Zbl
[23] K. I. Dolmatov, Field of Impulses of Analytical Dynamics, PhD Thesis, Tashkent, 1950 (in Russian)
[24] T. Carleman, Mathematical Problems of the Kinetic Theory of Gas, Russian translation, IL, M., 1960
[25] V. V. Kozlov, “Hydrodynamics of Hamiltonian systems”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1983, no. 6, 10–22 (in Russian) | Zbl
[26] V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995 (in Russian) | MR
[27] V. V. Kozlov, Thermal Equilibrium in the Sense of Gibbs and Poincare, In-t komp. issl., M.–Izhevsk, 2002 (in Russian) | MR
[28] V. V. Kozlov, General Theory of Vortexes, In-t komp. issl., M.–Izhevsk, 2013 (in Russian) | MR
[29] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Teor. mat. fiz., 134:3 (2003), 388–400 (in Russian) | DOI | MR | Zbl
[30] L. D. Landau, E. M. Livshits, Quantum Mechanics, Brief Course in Theoretical Physics. Book 2, Nauka, Moscow, 1972 (in Russian)
[31] L. D. Landau, E. M. Lifshits, Mechanics, v. 1, Nauka, Moscow, 1988 (in Russian) | MR
[32] E. M. Lifshits, L. P. Pitaevskiy, Theoretical Physics, v. 10, Physical Kinetics, Nauka, Moscow, 1979 (in Russian)
[33] V. A. Malyshev, S. A. Pirogov, “Reversibility and irreversibility in stochastic chemical kinetics”, Usp. mat. nauk, 63:1 (2008), 3–36 (in Russian) | DOI | MR | Zbl
[34] V. P. Maslov, Complex Markov Chains and Feynman Path Integral (for Nonlinear Equations, Nauka, Moscow, 1976 (in Russian)
[35] V. P. Maslov, M. V. Fedoryuk, Quasiclassical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 (in Russian) | MR
[36] J. Moser, Lecture Notes on Hamiltonian Systems, Russian translation, Mir, Moscow, 1973
[37] A. Puancare, “Notes on the kinetic theory of gases”: Puancare A., Selected Works, v. 3, M., 1974
[38] F. Riesz, B. Sz.-Nagy, Functional Analysis, Russian translation, Mir, Moscow, 1979
[39] N. N. Sanov, “On probabilities of large deviations of random values”, Mat. sb., 42(84):1 (1957), 11–44 (in Russian) | MR | Zbl
[40] Ya. G. Sinai, Contemporary Problems of Ergodic Theory, Fizmatlit, Moscow, 1995 (in Russian)
[41] P. R. Halmos, Measure Theory, Russian translation, IL, Moscow, 1953 | MR
[42] N. N. Chentsov, “Nonsymmetric distance between probability distributions, entropy, and Pythagorean theorem”, Mat. zametki, 4:3 (1968), 323–332 (in Russian) | MR | Zbl
[43] Ball J. M., Carr J., “Asymptotic behavior of solutions to the Becker–Doring equations for arbitrary initial data”, Proc. Royal Soc. Edinburgh A, 108 (1988), 109–116 | DOI | MR | Zbl
[44] Boltzmann L., “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”, Wien. Ber., 66 (1872), 275–370
[45] Boltzmann L., “Uber die Beziehung zwischen dem zweiten Hauptsatze der Mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Satzen uber das Warmegleichgewicht”, Wien. Ber., 76 (1878), 373–435
[46] Carr J., “Asymptotic behavior of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case”, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 231–244 | DOI | MR | Zbl
[47] Carr J., da Costa F. P., “Asymptotic behavior of solutions to the coagulation-fragmentation equations. I. Weak fragmentation”, J. Stat. Phys., 77:1/2 (1994), 89–123 | DOI | MR | Zbl
[48] Csiszar I., “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten”, Magyar. Tud. Akad. Mat. Kutato Int. Kozl., 8 (1963), 85–108 | MR | Zbl
[49] Kullback S., Leibler R. A., “On information and sufficiency”, Ann. Math. Stat., 22:1 (1951), 79–86 | DOI | MR | Zbl
[50] Morimoto T., “Markov processes and the $H$-theorem”, J. Phys. Soc. Jpn., 18:3 (1963), 328–331 | DOI | MR | Zbl
[51] Vedenyapin V. V., “Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann's $H$-function”, Russ. Math. Surv., 43:1 (1988), 193–219 | DOI | MR | Zbl
[52] Vedenyapin V. V., Fimin N. N., “The Hamilton–Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution”, Dokl. Math., 91:2 (2015), 154–157 | DOI | MR | Zbl
[53] von Neumann J., “Zur Operatorenmethode in der Klassischen Mechanik”, Ann. Math. (2), 33 (1932), 587–642 | DOI | MR | Zbl