Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 37-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the $H$-theorem for generalized chemical kinetics equations. We consider important physical examples of such a generalization: discrete models of quantum kinetic equations (Uehling–Uhlenbeck equations) and a quantum Markov process (quantum random walk). We prove that time averages coincide with Boltzmann extremals for all such equations and for the Liouville equation as well. This gives us an approach for choosing the action–angle variables in the Hamilton–Jacobi method in a non-Hamiltonian context. We propose a simple derivation of the Hamilton–Jacobi equation from the Liouville equations in the finite-dimensional case.
@article{CMFD_2018_64_1_a2,
     author = {V. V. Vedenyapin and S. Z. Adzhiev and V. V. Kazantseva},
     title = {Entropy in the sense of {Boltzmann} and {Poincare,} {Boltzmann} extremals, and the {Hamilton--Jacobi} method in {non-Hamiltonian} context},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {37--59},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - S. Z. Adzhiev
AU  - V. V. Kazantseva
TI  - Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 37
EP  - 59
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/
LA  - ru
ID  - CMFD_2018_64_1_a2
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A S. Z. Adzhiev
%A V. V. Kazantseva
%T Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 37-59
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/
%G ru
%F CMFD_2018_64_1_a2
V. V. Vedenyapin; S. Z. Adzhiev; V. V. Kazantseva. Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/

[1] S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equation, and the Kac circular model”, Zhurn. vych. mat. i mat. fiz., 51:11 (2011), 2063–2074 (in Russian) | MR | Zbl

[2] S. Adzhiev, V. Vedenyapin, “Entropy in the sense of Boltzmann and Poincare”, Usp. mat. nauk, 69:6 (2014), 45–80 (in Russian) | MR | Zbl

[3] I. S. Arzhanykh, Field of Impulses, Nauka, Tashkent, 1965 (in Russian) | MR

[4] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Nauka, Moscow, 1989 (in Russian)

[5] Ya. G. Batishcheva, V. V. Vedenyapin, “The 2nd law of thermodynamics for chemical kinetics”, Mat. model., 17:8 (2005), 106–110 (in Russian) | MR | Zbl

[6] L. Bol'tsman, “Further investigation of thermal equilibrium between molecules of gas”, Selected Works, Nauka, Moscow, 1984, 125–189 (in Russian)

[7] L. Bol'tsman, “On the relation between the second law of mechanical theory of heat and the probability theory in theorems on thermal equilibrium”, Selected Works, Nauka, Moscow, 1984, 190–235 (in Russian)

[8] A. D. Bryuno, The Limited Three-Body Problem, Nauka, Moscow, 1990 (in Russian) | MR

[9] V. V. Vedenyapin, “Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann's $H$-function”, Usp. mat. nauk, 43:1 (1988), 159–179 (in Russian) | MR | Zbl

[10] V. V. Vedenyapin, Kinetic Theory in the Sense of Maxwell, Boltzmann, and Vlasov, Lecture Notes, MGOU, Moscow, 2005 (in Russian)

[11] V. V. Vedenyapin, “Time averages and Boltzmann extremals”, Dokl. RAN, 422:2 (2008), 161–163 (in Russian) | MR | Zbl

[12] V. V. Vedenyapin, I. V. Mingalev, O. V. Mingalev, “On discrete models of the quantum Boltzmann equation”, Mat. sb., 184:11 (1993), 21–38 (in Russian) | MR | Zbl

[13] V. V. Vedenyapin, M. A. Negmatov, “On topology of stationary solutions of hydrodynamics and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method”, Dokl. RAN, 449:5 (2013), 521–526 (in Russian) | DOI | Zbl

[14] V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Vlasov and Liouville-type equations and their macroscopic, energetic, and hydrodynamics consequences”, Izv. RAN. Ser. Mat., 81:3 (2017), 45–82 (in Russian) | DOI | MR | Zbl

[15] V. V. Vedenyapin, Yu. N. Orlov, “Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation”, Teor. mat. fiz., 121:2 (1999), 307–315 (in Russian) | DOI | MR | Zbl

[16] V. V. Vedenyapin, N. N. Fimin, “The Hamilton–Jacobi method for non-Hamiltonian systems”, Nelin. dinamika, 11:2 (2015), 279–286 (in Russian) | Zbl

[17] V. V. Vedenyapin, N. N. Fimin, “The Hamilton–Jacobi method in non-Hamiltonian context and the hydrodynamical substitution”, Dokl. RAN, 461:2 (2015), 136–139 (in Russian) | DOI | Zbl

[18] A. M. Vershik, I. P. Kornfel'd, Ya. G. Sinai, “General ergodic theory of groups of transformations with invariant measure, I”, Sovrem. probl. mat. Fundam. napravl., 2, 1985, 5–111 (in Russian) | MR | Zbl

[19] A. I. Vol'pert, S. I. Khudyaev, Analysis in classes of discontinuous functions and equations of mathematical physics, Nauka, Moscow, 1975 (in Russian)

[20] A. V. Gasnikov (ed.), Introduction to Mathematical Modelling of Transport Flows, MTSNMO, Moscow, 2013 (in Russian)

[21] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Usp. mat. nauk, 26:3 (1971), 3–51 (in Russian) | MR | Zbl

[22] B. M. Gurevich, A. A. Tempel'man, “On sets of time and spatial averages for continuous functions on the space of configurations”, Usp. mat. nauk, 58:2 (2003), 161–162 (in Russian) | DOI | MR | Zbl

[23] K. I. Dolmatov, Field of Impulses of Analytical Dynamics, PhD Thesis, Tashkent, 1950 (in Russian)

[24] T. Carleman, Mathematical Problems of the Kinetic Theory of Gas, Russian translation, IL, M., 1960

[25] V. V. Kozlov, “Hydrodynamics of Hamiltonian systems”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1983, no. 6, 10–22 (in Russian) | Zbl

[26] V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995 (in Russian) | MR

[27] V. V. Kozlov, Thermal Equilibrium in the Sense of Gibbs and Poincare, In-t komp. issl., M.–Izhevsk, 2002 (in Russian) | MR

[28] V. V. Kozlov, General Theory of Vortexes, In-t komp. issl., M.–Izhevsk, 2013 (in Russian) | MR

[29] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Teor. mat. fiz., 134:3 (2003), 388–400 (in Russian) | DOI | MR | Zbl

[30] L. D. Landau, E. M. Livshits, Quantum Mechanics, Brief Course in Theoretical Physics. Book 2, Nauka, Moscow, 1972 (in Russian)

[31] L. D. Landau, E. M. Lifshits, Mechanics, v. 1, Nauka, Moscow, 1988 (in Russian) | MR

[32] E. M. Lifshits, L. P. Pitaevskiy, Theoretical Physics, v. 10, Physical Kinetics, Nauka, Moscow, 1979 (in Russian)

[33] V. A. Malyshev, S. A. Pirogov, “Reversibility and irreversibility in stochastic chemical kinetics”, Usp. mat. nauk, 63:1 (2008), 3–36 (in Russian) | DOI | MR | Zbl

[34] V. P. Maslov, Complex Markov Chains and Feynman Path Integral (for Nonlinear Equations, Nauka, Moscow, 1976 (in Russian)

[35] V. P. Maslov, M. V. Fedoryuk, Quasiclassical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 (in Russian) | MR

[36] J. Moser, Lecture Notes on Hamiltonian Systems, Russian translation, Mir, Moscow, 1973

[37] A. Puancare, “Notes on the kinetic theory of gases”: Puancare A., Selected Works, v. 3, M., 1974

[38] F. Riesz, B. Sz.-Nagy, Functional Analysis, Russian translation, Mir, Moscow, 1979

[39] N. N. Sanov, “On probabilities of large deviations of random values”, Mat. sb., 42(84):1 (1957), 11–44 (in Russian) | MR | Zbl

[40] Ya. G. Sinai, Contemporary Problems of Ergodic Theory, Fizmatlit, Moscow, 1995 (in Russian)

[41] P. R. Halmos, Measure Theory, Russian translation, IL, Moscow, 1953 | MR

[42] N. N. Chentsov, “Nonsymmetric distance between probability distributions, entropy, and Pythagorean theorem”, Mat. zametki, 4:3 (1968), 323–332 (in Russian) | MR | Zbl

[43] Ball J. M., Carr J., “Asymptotic behavior of solutions to the Becker–Doring equations for arbitrary initial data”, Proc. Royal Soc. Edinburgh A, 108 (1988), 109–116 | DOI | MR | Zbl

[44] Boltzmann L., “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”, Wien. Ber., 66 (1872), 275–370

[45] Boltzmann L., “Uber die Beziehung zwischen dem zweiten Hauptsatze der Mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Satzen uber das Warmegleichgewicht”, Wien. Ber., 76 (1878), 373–435

[46] Carr J., “Asymptotic behavior of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case”, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 231–244 | DOI | MR | Zbl

[47] Carr J., da Costa F. P., “Asymptotic behavior of solutions to the coagulation-fragmentation equations. I. Weak fragmentation”, J. Stat. Phys., 77:1/2 (1994), 89–123 | DOI | MR | Zbl

[48] Csiszar I., “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten”, Magyar. Tud. Akad. Mat. Kutato Int. Kozl., 8 (1963), 85–108 | MR | Zbl

[49] Kullback S., Leibler R. A., “On information and sufficiency”, Ann. Math. Stat., 22:1 (1951), 79–86 | DOI | MR | Zbl

[50] Morimoto T., “Markov processes and the $H$-theorem”, J. Phys. Soc. Jpn., 18:3 (1963), 328–331 | DOI | MR | Zbl

[51] Vedenyapin V. V., “Differential forms in spaces without a norm. A theorem on the uniqueness of Boltzmann's $H$-function”, Russ. Math. Surv., 43:1 (1988), 193–219 | DOI | MR | Zbl

[52] Vedenyapin V. V., Fimin N. N., “The Hamilton–Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution”, Dokl. Math., 91:2 (2015), 154–157 | DOI | MR | Zbl

[53] von Neumann J., “Zur Operatorenmethode in der Klassischen Mechanik”, Ann. Math. (2), 33 (1932), 587–642 | DOI | MR | Zbl