Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 37-59

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the $H$-theorem for generalized chemical kinetics equations. We consider important physical examples of such a generalization: discrete models of quantum kinetic equations (Uehling–Uhlenbeck equations) and a quantum Markov process (quantum random walk). We prove that time averages coincide with Boltzmann extremals for all such equations and for the Liouville equation as well. This gives us an approach for choosing the action–angle variables in the Hamilton–Jacobi method in a non-Hamiltonian context. We propose a simple derivation of the Hamilton–Jacobi equation from the Liouville equations in the finite-dimensional case.
@article{CMFD_2018_64_1_a2,
     author = {V. V. Vedenyapin and S. Z. Adzhiev and V. V. Kazantseva},
     title = {Entropy in the sense of {Boltzmann} and {Poincare,} {Boltzmann} extremals, and the {Hamilton--Jacobi} method in {non-Hamiltonian} context},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {37--59},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - S. Z. Adzhiev
AU  - V. V. Kazantseva
TI  - Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 37
EP  - 59
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/
LA  - ru
ID  - CMFD_2018_64_1_a2
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A S. Z. Adzhiev
%A V. V. Kazantseva
%T Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 37-59
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/
%G ru
%F CMFD_2018_64_1_a2
V. V. Vedenyapin; S. Z. Adzhiev; V. V. Kazantseva. Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a2/