Identifications for general degenerate problems of hyperbolic type in Hilbert spaces
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 194-210
Voir la notice de l'article provenant de la source Math-Net.Ru
In a Hilbert space $X$, we consider the abstract problem
\begin{align*}
^*\frac d{dt}(My(t))=Ly(t)+f(t)z,\quad0\le t\le\tau,\\
(0)=My_0,
\end{align*}
where $L$ is a closed linear operator in $X$ and $M\in\mathcal L(X)$ is not necessarily invertible, $z\in X$. Given the additional information $\Phi[My(t)]=g(t)$ wuth $\Phi\in X^*$, $g\in C^1([0,\tau];\mathbb C)$. We are concerned with the determination of the conditions under which we can identify $f\in C([0,\tau];\mathbb C)$ such that $y$ be a strict solution to the abstract problem, i.e., $My\in C^1([0,\tau];X)$, $Ly\in C([0,\tau];X)$. A similar problem is considered for general second order equations in time. Various examples of these general problems are given.
@article{CMFD_2018_64_1_a11,
author = {A. Favini and G. Marinoschi and H. Tanabe and Ya. Yakubov},
title = {Identifications for general degenerate problems of hyperbolic type in {Hilbert} spaces},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {194--210},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/}
}
TY - JOUR AU - A. Favini AU - G. Marinoschi AU - H. Tanabe AU - Ya. Yakubov TI - Identifications for general degenerate problems of hyperbolic type in Hilbert spaces JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 194 EP - 210 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/ LA - ru ID - CMFD_2018_64_1_a11 ER -
%0 Journal Article %A A. Favini %A G. Marinoschi %A H. Tanabe %A Ya. Yakubov %T Identifications for general degenerate problems of hyperbolic type in Hilbert spaces %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 194-210 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/ %G ru %F CMFD_2018_64_1_a11
A. Favini; G. Marinoschi; H. Tanabe; Ya. Yakubov. Identifications for general degenerate problems of hyperbolic type in Hilbert spaces. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 194-210. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/