Identifications for general degenerate problems of hyperbolic type in Hilbert spaces
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 194-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Hilbert space $X$, we consider the abstract problem \begin{align*} ^*\frac d{dt}(My(t))=Ly(t)+f(t)z,\quad0\le t\le\tau,\\ (0)=My_0, \end{align*} where $L$ is a closed linear operator in $X$ and $M\in\mathcal L(X)$ is not necessarily invertible, $z\in X$. Given the additional information $\Phi[My(t)]=g(t)$ wuth $\Phi\in X^*$, $g\in C^1([0,\tau];\mathbb C)$. We are concerned with the determination of the conditions under which we can identify $f\in C([0,\tau];\mathbb C)$ such that $y$ be a strict solution to the abstract problem, i.e., $My\in C^1([0,\tau];X)$, $Ly\in C([0,\tau];X)$. A similar problem is considered for general second order equations in time. Various examples of these general problems are given.
@article{CMFD_2018_64_1_a11,
     author = {A. Favini and G. Marinoschi and H. Tanabe and Ya. Yakubov},
     title = {Identifications for general degenerate problems of hyperbolic type in {Hilbert} spaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {194--210},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/}
}
TY  - JOUR
AU  - A. Favini
AU  - G. Marinoschi
AU  - H. Tanabe
AU  - Ya. Yakubov
TI  - Identifications for general degenerate problems of hyperbolic type in Hilbert spaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 194
EP  - 210
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/
LA  - ru
ID  - CMFD_2018_64_1_a11
ER  - 
%0 Journal Article
%A A. Favini
%A G. Marinoschi
%A H. Tanabe
%A Ya. Yakubov
%T Identifications for general degenerate problems of hyperbolic type in Hilbert spaces
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 194-210
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/
%G ru
%F CMFD_2018_64_1_a11
A. Favini; G. Marinoschi; H. Tanabe; Ya. Yakubov. Identifications for general degenerate problems of hyperbolic type in Hilbert spaces. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 194-210. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a11/

[1] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, Berlin, 2000 | MR | Zbl

[2] Favini A., Marinoschi G., “Identification for degenerate problems of hyperbolic type”, Appl. Anal., 91:8 (2012), 1511–1527 | DOI | MR | Zbl

[3] Favini A., Marinoschi G., “Identification for general degenerate problems of hyperbolic type”, Bruno Pini Math. Anal. Semin. Univ. Bologna, 7 (2016), 175–188 | MR

[4] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, New York, 1999 | MR | Zbl

[5] Lorenzi A., An introduction to identification problems via functional analysis, De Gruyter, Berlin, 2001

[6] Pazy A., Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983 | MR