Uniform basis property of the system of root vectors of the Dirac operator
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 180-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study one-dimensional Dirac operator $\mathcal L$ on the segment $[0,\pi]$ with regular in the sense of Birkhoff boundary conditions $U$ and complex-valued summable potential $P=(p_{ij}(x)),$ $i,j=1,2$. We prove uniform estimates for the Riesz constants of systems of root functions of a strongly regular operator $\mathcal L$ assuming that boundary-value conditions $U$ and the number $\int_0^\pi(p_1(x)-p_4(x))\,dx$ are fixed and the potential $P$ takes values from the ball $B(0,R)$ of radius $R$ in the space $L_\varkappa$ for $\varkappa>1$. Moreover, we can choose the system of root functions so that it consists of eigenfunctions of the operator $\mathcal L$ except for a finite number of root vectors that can be uniformly estimated over the ball $\|P\|_\varkappa\le R$.
@article{CMFD_2018_64_1_a10,
     author = {A. M. Savchuk and I. V. Sadovnichaya},
     title = {Uniform basis property of the system of root vectors of the {Dirac} operator},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {180--193},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - I. V. Sadovnichaya
TI  - Uniform basis property of the system of root vectors of the Dirac operator
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 180
EP  - 193
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/
LA  - ru
ID  - CMFD_2018_64_1_a10
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A I. V. Sadovnichaya
%T Uniform basis property of the system of root vectors of the Dirac operator
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 180-193
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/
%G ru
%F CMFD_2018_64_1_a10
A. M. Savchuk; I. V. Sadovnichaya. Uniform basis property of the system of root vectors of the Dirac operator. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 180-193. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/

[1] J. Garnett, Bounded Analytic Functions, Russian translation, Mir, Moscow, 1984

[2] R. O. Griniv, “Uniformly bounded families of Riesz bases consisting of exponents, sinuses, and cosines”, Mat. zametki, 87:4 (2010), 542–553 (in Russian) | DOI | MR | Zbl

[3] T. Kato, Perturbation Theory for Linear Operators, Russian translation, Mir, Moscow, 1972

[4] A. M. Savchuk, I. V. Sadovnichaya, “Asymptotical formulas for fundamental solutions of the Dirac system with complex-valued summable potential”, Diff. uravn., 49:1 (2013), 573–584 (in Russian) | MR | Zbl

[5] “Riesz basis property from subspaces for the Dirac system with summable potential”, Dokl. RAN, 462:3 (2015), 274–277 (in Russian) | DOI | Zbl

[6] A. M. Savchuk, I. V. Sadovnichaya, “The Riesz basis property with brackets for Dirac systems with summable potentials”, Sovrem. mat. Fundam. napravl., 58, 2015, 128–152 (in Russian)

[7] A. M. Savchuk, I. V. Sadovnichaya, “Estimates of the Riesz constants for a system with summable potential”, Diff. uravn., 2018 (in Russian)

[8] A. M. Savchuk, A. A. Shkalikov, “Uniform stability of the inverse Sturm–Liouville problem with respect to a spectral functions in the scale of Sobolev spaces”, Tr. MIAN, 283, 2013, 188–203 (in Russian) | DOI | MR | Zbl

[9] I. V. Sadovnichaya, “Uniform asymptotics of eigenvalues and eigenfunctions of a Dirac system with summable potential”, Diff. uravn., 52:8 (2016), 1039–1049 (in Russian) | DOI | MR | Zbl

[10] I. V. Sadovnichaya, “Equiconvergence of spectral expansions for a Dirac system with potential from Lebesgue spaces”, Tr. MIAN, 293, 2016, 296–324 (in Russian) | DOI | MR | Zbl

[11] A. M. Sedletskiy, “Nonharmonic analysis”, Itogi nauki i tekhn. Ser. mat. i ee prilozh., 96, 2006, 106–211 (in Russian) | MR | Zbl

[12] Avdonin S. A., Ivanov S. A., Families of exponentials. The method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[13] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[14] Hryniv R. O., “Analyticity and uniform stability of the inverse singular Sturm–Liouville spectral problem”, Inverse Problems, 27 (2011), 1–25 | DOI | MR

[15] Lunyov A. A., Malamud M. M., “On the Riesz basis property of root vectors system for $2\times2$ Dirac type operators”, J. Math. Anal. Appl., 441 (2016), 57–103 | DOI | MR | Zbl

[16] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[17] Young R. M., An introduction to nonharmonic Fourier series, Acad. Press, San Diego, 2001 | MR | Zbl