Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a10, author = {A. M. Savchuk and I. V. Sadovnichaya}, title = {Uniform basis property of the system of root vectors of the {Dirac} operator}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {180--193}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/} }
TY - JOUR AU - A. M. Savchuk AU - I. V. Sadovnichaya TI - Uniform basis property of the system of root vectors of the Dirac operator JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 180 EP - 193 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/ LA - ru ID - CMFD_2018_64_1_a10 ER -
%0 Journal Article %A A. M. Savchuk %A I. V. Sadovnichaya %T Uniform basis property of the system of root vectors of the Dirac operator %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 180-193 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/ %G ru %F CMFD_2018_64_1_a10
A. M. Savchuk; I. V. Sadovnichaya. Uniform basis property of the system of root vectors of the Dirac operator. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 180-193. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a10/
[1] J. Garnett, Bounded Analytic Functions, Russian translation, Mir, Moscow, 1984
[2] R. O. Griniv, “Uniformly bounded families of Riesz bases consisting of exponents, sinuses, and cosines”, Mat. zametki, 87:4 (2010), 542–553 (in Russian) | DOI | MR | Zbl
[3] T. Kato, Perturbation Theory for Linear Operators, Russian translation, Mir, Moscow, 1972
[4] A. M. Savchuk, I. V. Sadovnichaya, “Asymptotical formulas for fundamental solutions of the Dirac system with complex-valued summable potential”, Diff. uravn., 49:1 (2013), 573–584 (in Russian) | MR | Zbl
[5] “Riesz basis property from subspaces for the Dirac system with summable potential”, Dokl. RAN, 462:3 (2015), 274–277 (in Russian) | DOI | Zbl
[6] A. M. Savchuk, I. V. Sadovnichaya, “The Riesz basis property with brackets for Dirac systems with summable potentials”, Sovrem. mat. Fundam. napravl., 58, 2015, 128–152 (in Russian)
[7] A. M. Savchuk, I. V. Sadovnichaya, “Estimates of the Riesz constants for a system with summable potential”, Diff. uravn., 2018 (in Russian)
[8] A. M. Savchuk, A. A. Shkalikov, “Uniform stability of the inverse Sturm–Liouville problem with respect to a spectral functions in the scale of Sobolev spaces”, Tr. MIAN, 283, 2013, 188–203 (in Russian) | DOI | MR | Zbl
[9] I. V. Sadovnichaya, “Uniform asymptotics of eigenvalues and eigenfunctions of a Dirac system with summable potential”, Diff. uravn., 52:8 (2016), 1039–1049 (in Russian) | DOI | MR | Zbl
[10] I. V. Sadovnichaya, “Equiconvergence of spectral expansions for a Dirac system with potential from Lebesgue spaces”, Tr. MIAN, 293, 2016, 296–324 (in Russian) | DOI | MR | Zbl
[11] A. M. Sedletskiy, “Nonharmonic analysis”, Itogi nauki i tekhn. Ser. mat. i ee prilozh., 96, 2006, 106–211 (in Russian) | MR | Zbl
[12] Avdonin S. A., Ivanov S. A., Families of exponentials. The method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[13] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl
[14] Hryniv R. O., “Analyticity and uniform stability of the inverse singular Sturm–Liouville spectral problem”, Inverse Problems, 27 (2011), 1–25 | DOI | MR
[15] Lunyov A. A., Malamud M. M., “On the Riesz basis property of root vectors system for $2\times2$ Dirac type operators”, J. Math. Anal. Appl., 441 (2016), 57–103 | DOI | MR | Zbl
[16] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl
[17] Young R. M., An introduction to nonharmonic Fourier series, Acad. Press, San Diego, 2001 | MR | Zbl