Mixed problem for a~parabolic system on a~plane and boundary integral equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 20-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the mixed problem for a one-dimensional (with respect to the spatial variable) second-order parabolic system with Dini-continuous coefficients in a domain with nonsmooth lateral boundaries. Using the method of boundary integral equations, we find a classical solution of this problem. We investigate the smoothness of solution as well.
@article{CMFD_2018_64_1_a1,
     author = {E. A. Baderko and M. F. Cherepova},
     title = {Mixed problem for a~parabolic system on a~plane and boundary integral equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a1/}
}
TY  - JOUR
AU  - E. A. Baderko
AU  - M. F. Cherepova
TI  - Mixed problem for a~parabolic system on a~plane and boundary integral equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 20
EP  - 36
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a1/
LA  - ru
ID  - CMFD_2018_64_1_a1
ER  - 
%0 Journal Article
%A E. A. Baderko
%A M. F. Cherepova
%T Mixed problem for a~parabolic system on a~plane and boundary integral equations
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 20-36
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a1/
%G ru
%F CMFD_2018_64_1_a1
E. A. Baderko; M. F. Cherepova. Mixed problem for a~parabolic system on a~plane and boundary integral equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a1/