A stable difference scheme for a~third-order partial differential equation
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 1-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlocal boundary-value problem for a third order partial differential equation \begin{equation*} \left\{ \begin{array}{l} \frac{d^3u(t)}{dt^3}+A\frac{du(t)}{dt}=f(t),\quad 01,\\ u(0)=\gamma u(\lambda)+\varphi,\qquad u'(0)=\alpha u'(\lambda)+\psi,\quad|\gamma|1,\\ u''(0)=\beta u''(\lambda)+\xi,\qquad|1+\beta\alpha|>|\alpha+\beta|,\quad0\lambda\leq1, \end{array} \right. \end{equation*} in a Hilbert space $H$ with a self-adjoint positive definite operator $A$ is considered. A stable three-step difference scheme for the approximate solution of the problem is presented. The main theorem on stability of this difference scheme is established. In applications, the stability estimates for the solution of difference schemes of the approximate solution of three nonlocal boundary value problems for third order partial differential equations are obtained. Numerical results for one- and two-dimensional third order partial differential equations are provided.
@article{CMFD_2018_64_1_a0,
     author = {A. Ashyralyev and Kh. Belakroum},
     title = {A stable difference scheme for a~third-order partial differential equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/}
}
TY  - JOUR
AU  - A. Ashyralyev
AU  - Kh. Belakroum
TI  - A stable difference scheme for a~third-order partial differential equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 1
EP  - 19
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/
LA  - ru
ID  - CMFD_2018_64_1_a0
ER  - 
%0 Journal Article
%A A. Ashyralyev
%A Kh. Belakroum
%T A stable difference scheme for a~third-order partial differential equation
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 1-19
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/
%G ru
%F CMFD_2018_64_1_a0
A. Ashyralyev; Kh. Belakroum. A stable difference scheme for a~third-order partial differential equation. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/