Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a0, author = {A. Ashyralyev and Kh. Belakroum}, title = {A stable difference scheme for a~third-order partial differential equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {1--19}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/} }
TY - JOUR AU - A. Ashyralyev AU - Kh. Belakroum TI - A stable difference scheme for a~third-order partial differential equation JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 1 EP - 19 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/ LA - ru ID - CMFD_2018_64_1_a0 ER -
%0 Journal Article %A A. Ashyralyev %A Kh. Belakroum %T A stable difference scheme for a~third-order partial differential equation %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 1-19 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/ %G ru %F CMFD_2018_64_1_a0
A. Ashyralyev; Kh. Belakroum. A stable difference scheme for a~third-order partial differential equation. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a0/
[1] Sh. Amirov, A. I. Kozhanov, “Mixed problem for one class of higher-order strongly nonlinear equations of Sobolev type”, Dokl. AN SSSR, 451:5 (2013), 492–494 (in Russian) | DOI | MR | Zbl
[2] V. V. Vlasov, N. A. Rautian, Spectral Analysis of Functional Differential Equations, MAKS Press, Moscow, 2016 (in Russian)
[3] G. A. Gabov, A. G. Sveshnikov, Problems of Dynamics of Stratified Fluids, Nauka, Moscow, 1986 (in Russian)
[4] A. I. Kozhanov, “Mixed problem for some classes of third-order nonlinear equations”, Mat. sb., 118(160):4 (1982), 504–522 (in Russian) | MR | Zbl
[5] A. I. Kozhanov, “Mixed problem for one class of third-order quasilinear equations”, Boundary-Value Problems for Nonlinear Equations of Mathematical Physics, Inst. Math. Sib. Branch Acad. Sci. USSR, Novosibirsk, 1982, 118–128 (in Russian)
[6] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian)
[7] A. L. Skubachevskii, “Boundary-value problems for elliptic functional differential equations and their applications”, Usp. mat. nauk, 71:5 (2016), 3–112 (in Russian) | DOI | MR | Zbl
[8] P. E. Sobolevskii, Difference Methods for Approximate Solutions of Differential Equations, Voronezh State Univ., Voronezh, 1975 (in Russian)
[9] Apakov Y., “On the solution of a boundary-value problem for a third-order equation with multiple characteristics”, Ukr. Math. J., 64:1 (2012), 1–12 | DOI | MR | Zbl
[10] Apakov Y., Irgashev B., “Boundary-value problem for a generate high-odd order equation”, Ukr. Math. J., 66:10 (2015), 1475–1490 | DOI | MR | Zbl
[11] Apakov Y., Rutkauskas S., “On a boundary value problem to third order PDE with multiple characteristics”, Nonlinear Anal. Model. Control., 16:3 (2011), 255–269 | MR | Zbl
[12] Ashyralyev A., “Fractional spaces generated by the positivite differential and difference operator in a Banach space”, Mathematical methods in engineering, Selected papers of the International Symposium, MME06 (Ankara, Turkey, April 27–29, 2006), Springer, Dordrecht, 2007, 13–22 | DOI | Zbl
[13] Ashyralyev C., Akyuz G., Dedeturk M., “Approximate solution for an inverse problem of multidimensional elliptic equation with multipoint nonlocal and Neumann boundary conditions”, Electron. J. Differ. Equ., 2017:197 (2017), 1–16 | MR
[14] Ashyralyev A., Arjmand D., Koksal M., “A note on the Taylor's decomposition on four points for a third-order differential equation”, Appl. Math. Comput., 188:2 (2007), 1483–1490 | MR | Zbl
[15] Ashyralyev A., Arjmand D., Koksal M., “Taylor's decomposition on four points for solving third-order linear time-varying systems”, J. Franklin Inst., 346:7 (2009), 651–662 | DOI | MR | Zbl
[16] Ashyralyev A., Belakroum Kh., Guezane-Lakoud A., “Stability of boundary-value problems for third order partial differential equations”, Electron. J. Differ. Equ., 2017 (2017), Paper No. 53, 11 pp. | MR
[17] Ashyralyev A., Simsek S. N., “An operator method for a third-order partial differential equation”, Numer. Funct. Anal. Optim., 38:9 (2017), 1–19 | MR
[18] Ashyralyev A., Sobolevskii P. E., “A note on the difference schemes for hyperbolic equations”, Abstr. Appl. Anal., 6:2 (2001), 63–70 | DOI | MR | Zbl
[19] Ashyralyev A., Sobolevskii P. E., New difference schemes for partial differential equations, Birkhäuser, Basel–Boston–Berlin, 2004 | Zbl
[20] Belakroum Kh., Ashyralyev A., Guezane-Lakoud A., “A note on the nonlocal boundary value problem for a third order partial differential equation”, AIP Conf. Proc., 1759 (2016), Article ID 020021
[21] Denche M., Memou A., “Boundary value problem with integral conditions for a linear third-order equation”, J. Appl. Math., 11 (2003), 533–567 | MR
[22] Direk Z., Ashyraliyev M., “FDM for the integral-differential equation of the hyperbolic type”, Adv. Difference Equ., 2014:132 (2014), 1–8 | DOI | MR
[23] Fattorini H. O., Second order linear differential equations in Banach spaces, Elsevier, Amsterdam, 1985 | MR
[24] Kalmenov T. S., Suragan B., “Initial-boundary value problems for the wave equation”, Electron. J. Differ. Equ., 2014 (2014), Paper No. 48, 6 pp. | MR
[25] Kudu M., Amirali I., “Method of lines for third order partial differential equations”, J. Appl. Math. Phys., 2:2 (2014), 33–36 | DOI
[26] Latrous C., Memou A., “A three-point boundary value problem with an integral condition for a third-order partial differential equation”, Abstr. Appl. Anal., 2005:1 (2005), 33–43 | DOI | MR | Zbl
[27] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel–Boston–Berlin, 1995 | MR | Zbl
[28] Niu J., Li P., “Numerical algorithm for the third-order partial differential equation with three-point boundary value problem”, Abstr. Appl. Anal., 2014 (2014), Article ID 630671 | DOI | MR
[29] Shakhmurov V., Musaev H., “Maximal regular convolution-differential equations in weighted Besov spaces”, Appl. Comput. Math., 16:2 (2017), 190–200 | MR | Zbl
[30] Skubachevskii A. L., Elliptic functional-differential equations and applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl