Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_4_a8, author = {A. M. Savchuk}, title = {The {Calderon--Zygmund} operator and its relation to asymptotic estimates for ordinary differential operators}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {689--702}, publisher = {mathdoc}, volume = {63}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/} }
TY - JOUR AU - A. M. Savchuk TI - The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 689 EP - 702 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/ LA - ru ID - CMFD_2017_63_4_a8 ER -
%0 Journal Article %A A. M. Savchuk %T The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 689-702 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/ %G ru %F CMFD_2017_63_4_a8
A. M. Savchuk. The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 689-702. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/
[1] J. Garnett, Bounded Analytic Functions, Mir, Moscow, 1984, Russian translation | MR
[2] K. A. Mirzoev, A. A. Shkalikov, “Even-order differential operators with distributions as coefficients”, Mat. zametki [Math. Notes], 99:5 (2016), 788–793 (in Russian) | DOI | MR | Zbl
[3] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distributions as potentials”, Tr. Mosk. mat. ob-va [Proc. Moscow Math. Soc.], 64, 2003, 159–219 (in Russian)
[4] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Mir, Moscow, 1973 (Russian translation) | MR
[5] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Mir, Moscow, 1980, Russian translation | MR
[6] A. A. Shkalikov, “Perturbations of self-adjoin operators with discrete spectrum”, Usp. mat. nauk [Progr. Math. Sci.], 71:5(431) (2016), 113–174 (in Russian) | DOI | MR | Zbl
[7] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear diferential equations containing a parameter”, Trans. Am. Math. Soc., 9 (1908), 21–231 | MR
[8] Grafakos L., Classical Fourier analysis, Springer Science+Business Media, 2008 | MR | Zbl
[9] Grafakos L., Modern Fourier analysis, Springer Science+Business Media, 2009 | MR | Zbl
[10] Meyer Y., Coifman R., Wavelets Calderon–Zygmund and multilinear operators, Cambridge Univ. Press, 1997 | MR | Zbl
[11] Rykhlov V. S., “Asymptotical formulas for solutions of linear differential systems of the first order”, Result. Math., 36 (1999), 342–353 | DOI | MR | Zbl
[12] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR
[13] Savchuk A. M., Shkalikov A. A., Asymptotic formulas for fundamental system of solutions of high order ordinary differential equations with coefficients-distributions, 04/2017, arXiv: 1704.02736
[14] Tamarkin J. D., On some general problems of the theory of ordinary linear differential operators and on expansion of arbitrary functions into series, Petrograd, 1917