The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 689-702.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating of expressions of the kind $\Upsilon(\lambda)=\sup_{x\in[0,1]}\left|\int_0^xf(t)e^{i\lambda t}\,dt\right|$. In particular, for the case $f\in L_p[0,1]$, $p\in(1,2]$, we prove the estimate $\|\Upsilon(\lambda)\|_{L_q(\mathbb R)}\le C\|f\|_{L_p}$ for any $q>p'$, where $1/p+1/p'=1$. The same estimate is proved for the space $L_q(d\mu)$, where $d\mu$ is an arbitrary Carleson measure in the upper half-plane $\mathbb C_+$. Also, we estimate more complex expressions of the kind $\Upsilon(\lambda)$ arising in study of asymptotics of the fundamental system of solutions for systems of the kind $\mathbf y'=B\mathbf y+A(x)\mathbf y+C(x,\lambda)\mathbf y$ with dimension $n$ as $|\lambda|\to\infty$ in suitable sectors of the complex plane.
@article{CMFD_2017_63_4_a8,
     author = {A. M. Savchuk},
     title = {The {Calderon--Zygmund} operator and its relation to asymptotic estimates for ordinary differential operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {689--702},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 689
EP  - 702
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/
LA  - ru
ID  - CMFD_2017_63_4_a8
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 689-702
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/
%G ru
%F CMFD_2017_63_4_a8
A. M. Savchuk. The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 689-702. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/

[1] J. Garnett, Bounded Analytic Functions, Mir, Moscow, 1984, Russian translation | MR

[2] K. A. Mirzoev, A. A. Shkalikov, “Even-order differential operators with distributions as coefficients”, Mat. zametki [Math. Notes], 99:5 (2016), 788–793 (in Russian) | DOI | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distributions as potentials”, Tr. Mosk. mat. ob-va [Proc. Moscow Math. Soc.], 64, 2003, 159–219 (in Russian)

[4] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Mir, Moscow, 1973 (Russian translation) | MR

[5] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Mir, Moscow, 1980, Russian translation | MR

[6] A. A. Shkalikov, “Perturbations of self-adjoin operators with discrete spectrum”, Usp. mat. nauk [Progr. Math. Sci.], 71:5(431) (2016), 113–174 (in Russian) | DOI | MR | Zbl

[7] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear diferential equations containing a parameter”, Trans. Am. Math. Soc., 9 (1908), 21–231 | MR

[8] Grafakos L., Classical Fourier analysis, Springer Science+Business Media, 2008 | MR | Zbl

[9] Grafakos L., Modern Fourier analysis, Springer Science+Business Media, 2009 | MR | Zbl

[10] Meyer Y., Coifman R., Wavelets Calderon–Zygmund and multilinear operators, Cambridge Univ. Press, 1997 | MR | Zbl

[11] Rykhlov V. S., “Asymptotical formulas for solutions of linear differential systems of the first order”, Result. Math., 36 (1999), 342–353 | DOI | MR | Zbl

[12] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR

[13] Savchuk A. M., Shkalikov A. A., Asymptotic formulas for fundamental system of solutions of high order ordinary differential equations with coefficients-distributions, 04/2017, arXiv: 1704.02736

[14] Tamarkin J. D., On some general problems of the theory of ordinary linear differential operators and on expansion of arbitrary functions into series, Petrograd, 1917