The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 689-702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of estimating of expressions of the kind $\Upsilon(\lambda)=\sup_{x\in[0,1]}\left|\int_0^xf(t)e^{i\lambda t}\,dt\right|$. In particular, for the case $f\in L_p[0,1]$, $p\in(1,2]$, we prove the estimate $\|\Upsilon(\lambda)\|_{L_q(\mathbb R)}\le C\|f\|_{L_p}$ for any $q>p'$, where $1/p+1/p'=1$. The same estimate is proved for the space $L_q(d\mu)$, where $d\mu$ is an arbitrary Carleson measure in the upper half-plane $\mathbb C_+$. Also, we estimate more complex expressions of the kind $\Upsilon(\lambda)$ arising in study of asymptotics of the fundamental system of solutions for systems of the kind $\mathbf y'=B\mathbf y+A(x)\mathbf y+C(x,\lambda)\mathbf y$ with dimension $n$ as $|\lambda|\to\infty$ in suitable sectors of the complex plane.
@article{CMFD_2017_63_4_a8,
     author = {A. M. Savchuk},
     title = {The {Calderon{\textendash}Zygmund} operator and its relation to asymptotic estimates for ordinary differential operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {689--702},
     year = {2017},
     volume = {63},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 689
EP  - 702
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/
LA  - ru
ID  - CMFD_2017_63_4_a8
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 689-702
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/
%G ru
%F CMFD_2017_63_4_a8
A. M. Savchuk. The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 689-702. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/

[1] J. Garnett, Bounded Analytic Functions, Mir, Moscow, 1984, Russian translation | MR

[2] K. A. Mirzoev, A. A. Shkalikov, “Even-order differential operators with distributions as coefficients”, Mat. zametki [Math. Notes], 99:5 (2016), 788–793 (in Russian) | DOI | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distributions as potentials”, Tr. Mosk. mat. ob-va [Proc. Moscow Math. Soc.], 64, 2003, 159–219 (in Russian)

[4] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Mir, Moscow, 1973 (Russian translation) | MR

[5] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Mir, Moscow, 1980, Russian translation | MR

[6] A. A. Shkalikov, “Perturbations of self-adjoin operators with discrete spectrum”, Usp. mat. nauk [Progr. Math. Sci.], 71:5(431) (2016), 113–174 (in Russian) | DOI | MR | Zbl

[7] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear diferential equations containing a parameter”, Trans. Am. Math. Soc., 9 (1908), 21–231 | MR

[8] Grafakos L., Classical Fourier analysis, Springer Science+Business Media, 2008 | MR | Zbl

[9] Grafakos L., Modern Fourier analysis, Springer Science+Business Media, 2009 | MR | Zbl

[10] Meyer Y., Coifman R., Wavelets Calderon–Zygmund and multilinear operators, Cambridge Univ. Press, 1997 | MR | Zbl

[11] Rykhlov V. S., “Asymptotical formulas for solutions of linear differential systems of the first order”, Result. Math., 36 (1999), 342–353 | DOI | MR | Zbl

[12] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR

[13] Savchuk A. M., Shkalikov A. A., Asymptotic formulas for fundamental system of solutions of high order ordinary differential equations with coefficients-distributions, 04/2017, arXiv: 1704.02736

[14] Tamarkin J. D., On some general problems of the theory of ordinary linear differential operators and on expansion of arbitrary functions into series, Petrograd, 1917