@article{CMFD_2017_63_4_a8,
author = {A. M. Savchuk},
title = {The {Calderon{\textendash}Zygmund} operator and its relation to asymptotic estimates for ordinary differential operators},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {689--702},
year = {2017},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/}
}
TY - JOUR AU - A. M. Savchuk TI - The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 689 EP - 702 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/ LA - ru ID - CMFD_2017_63_4_a8 ER -
%0 Journal Article %A A. M. Savchuk %T The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 689-702 %V 63 %N 4 %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/ %G ru %F CMFD_2017_63_4_a8
A. M. Savchuk. The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 689-702. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a8/
[1] J. Garnett, Bounded Analytic Functions, Mir, Moscow, 1984, Russian translation | MR
[2] K. A. Mirzoev, A. A. Shkalikov, “Even-order differential operators with distributions as coefficients”, Mat. zametki [Math. Notes], 99:5 (2016), 788–793 (in Russian) | DOI | MR | Zbl
[3] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distributions as potentials”, Tr. Mosk. mat. ob-va [Proc. Moscow Math. Soc.], 64, 2003, 159–219 (in Russian)
[4] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Mir, Moscow, 1973 (Russian translation) | MR
[5] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Mir, Moscow, 1980, Russian translation | MR
[6] A. A. Shkalikov, “Perturbations of self-adjoin operators with discrete spectrum”, Usp. mat. nauk [Progr. Math. Sci.], 71:5(431) (2016), 113–174 (in Russian) | DOI | MR | Zbl
[7] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear diferential equations containing a parameter”, Trans. Am. Math. Soc., 9 (1908), 21–231 | MR
[8] Grafakos L., Classical Fourier analysis, Springer Science+Business Media, 2008 | MR | Zbl
[9] Grafakos L., Modern Fourier analysis, Springer Science+Business Media, 2009 | MR | Zbl
[10] Meyer Y., Coifman R., Wavelets Calderon–Zygmund and multilinear operators, Cambridge Univ. Press, 1997 | MR | Zbl
[11] Rykhlov V. S., “Asymptotical formulas for solutions of linear differential systems of the first order”, Result. Math., 36 (1999), 342–353 | DOI | MR | Zbl
[12] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR
[13] Savchuk A. M., Shkalikov A. A., Asymptotic formulas for fundamental system of solutions of high order ordinary differential equations with coefficients-distributions, 04/2017, arXiv: 1704.02736
[14] Tamarkin J. D., On some general problems of the theory of ordinary linear differential operators and on expansion of arbitrary functions into series, Petrograd, 1917