Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_4_a6, author = {N. D. Kopachevsky and V. I. Voytitsky and Z. Z. Sitshaeva}, title = {On oscillations of two connected pendulums containing cavities partially filled with incompressible fluid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {627--677}, publisher = {mathdoc}, volume = {63}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a6/} }
TY - JOUR AU - N. D. Kopachevsky AU - V. I. Voytitsky AU - Z. Z. Sitshaeva TI - On oscillations of two connected pendulums containing cavities partially filled with incompressible fluid JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 627 EP - 677 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a6/ LA - ru ID - CMFD_2017_63_4_a6 ER -
%0 Journal Article %A N. D. Kopachevsky %A V. I. Voytitsky %A Z. Z. Sitshaeva %T On oscillations of two connected pendulums containing cavities partially filled with incompressible fluid %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 627-677 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a6/ %G ru %F CMFD_2017_63_4_a6
N. D. Kopachevsky; V. I. Voytitsky; Z. Z. Sitshaeva. On oscillations of two connected pendulums containing cavities partially filled with incompressible fluid. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 627-677. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a6/
[1] Yu. Sh. Abramov, Variational Methods in the Theory of Operator Pencils. Spectral Optimization, LGU, Leningrad, 1983 (in Russian) | MR
[2] M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in domains with smooth and nonsmooth boundary”, Usp. mat. nauk [Progr. Math. Sci.], 57:5 (2002), 3–78 (in Russian) | DOI | MR | Zbl
[3] T. Ya. Azizov, I. S. Iokhvidov, Basics of the Theory of Linear Operators in Spaces with Indefinite Metrics, Nauka, Moscow, 1986 (in Russian) | MR
[4] E. I. Batyr, “Small motions of system of serially connected bodies with cavities containing viscous incompressible fluid”, Dinam. sist. [Dynam. Syst.], 17, 2001, 120–125 (in Russian) | Zbl
[5] E. I. Batyr, “Small motions of system of serially connected bodies with cavities containing ideal incompressible fluid”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo [Sci. Notes Vernadskii Tavria Nats. Univ.], 15(54):2 (2002), 5–10 (in Russian)
[6] E. I. Batyr, “Small motions and normal oscillations of a system of three connected bodies with cavities filled with ideal incompressible fluid]”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo [Sci. Notes Vernadskii Tavria Nats. Univ.], 23(62):2 (2010), 19–38 (in Russian)
[7] E. I. Batyr, O. A. Dudik, N. D. Kopachevsky, “Small motions of bodies with cavities filled with incompressible viscous fluid”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki [Bull. Higher Edu. North Caucas. Reg. Nat. Sci.], 49 (2009), 15–29 (in Russian)
[8] E. I. Batyr, N. D. Kopachevsky, “Small motions and normal oscillations in systems of connected gyrostats]”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 49, 2013, 5–88 (in Russian)
[9] M. Sh. Birman, M. Z. Solomyak, “Asymptotics of spectrum of differential equations”, Itogi nauki i tekhn. Mat. analiz [Totals Sci. Tech. Math. Anal.], 14, 1977, 5–58 (in Russian) | MR | Zbl
[10] V. I. Voytitskiy, N. D. Kopachevsky, “Small motions of a system of two connected bodies with cavities partially filled with heavy viscous fluid”, Tavr. vestn. inform. i mat. [Tavricheskiy Bull. Inform. Math.], 2017, no. 2(35), 7–32 (in Russian)
[11] I. L. Vulis, M. Z. Solomyak, “Spectral asymptotics of the degenerating Steklov problem”, Vestn. LGU [Bull. Leningrad State Univ.], 1973, no. 19, 148–150 (in Russian) | MR | Zbl
[12] I. L. Vulis, M. Z. Solomyak, “Spectral asymptotics of second-order degenerating elliptic operators”, Izv. AN SSSR. Ser. Mat. [Bull. Acad. Sci. USSR. Ser. Math.], 38:6 (1974), 1362–1392 (in Russian) | MR | Zbl
[13] N. E. Zhukovskiy, “On motion of a solid body with cavities filled with homogeneous dropping fluid”, Selected Works, v. 1, Gostekhizdat, Moscow–Leningrad, 1948, 31–52 (in Russian)
[14] N. A. Karazeeva, M. Z. Solomyak, “Asymptotics of spectrum of Steklov-type problems in composite domains”, Probl. mat. analiza [Probl. Math. Anal.], 8, 1981, 36–48 (in Russian) | MR | Zbl
[15] N. D. Kopachevsky, “On oscillations of a body with cavity partially filled with heavy ideal fluid: theorems of existence, uniqueness, and stability of strong solutions”, Problemi dinamiki ta stiykosti bagatovimirnikh sistem. Zb. prats' Institutu matematiki NAN Ukraï ni [Probl. Dynamics Stability Multidimen. Syst.: Digest Works Inst. Math. Acad. Sci. Ukraine], 1:1 (2005), 158–194 (in Russian)
[16] N. D. Kopachevsky, S. G. Krein, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolutional and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR
[17] N. D. Kopachevsky, Spectral Theory of Operator Pencils: A Special Course, Forma, Simferopol', 2009 (in Russian)
[18] N. D. Kopachevsky, Integrodifferential Equations in a Hilbert Space: A Special Course, FLP Bondarenko, Simferopol', 2012
[19] N. D. Kopachevsky, “Abstract Green formulas for triples of Hilbert spaces and sesquilinear forms”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 57, 2015, 71–107 (in Russian)
[20] N. D. Kopachevsky, Abstract Green Formula and Some Its Applications, Forma, Simferopol', 2016 (in Russian)
[21] S. G. Krein, Linear Differential Equations in a Banach Space, Nauka, Moscow, 1967 (in Russian) | MR
[22] S. G. Krein, N. N. Moiseev, “On oscillations of solid body containing fluid with a free boundary”, Prikl. mat. mekh. [Appl. Math. Mech.], 21:2 (1957), 169–174 (in Russian)
[23] A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR
[24] S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, Moscow, 1970 (in Russian) | MR
[25] L. S. Pontryagin, “Hermit operators in spaces with indefinite metrics”, Izv. AN SSSR. Ser. Mat. [Bull. Acad. Sci. USSR. Ser. Math.], 8:6 (1944), 243–280 (in Russian) | MR | Zbl
[26] V. A. Prigorskiy, “On some classes of bases of Hilbert spaces”, Usp. mat. nauk [Progr. Math. Sci.], 20:5(125) (1965), 231–236 (in Russian) | MR | Zbl
[27] T. A. Suslina, “Asymptotics of spectrum of variational problems on solutions of homogeneous elliptic equation with relations on part of the boundary”, Probl. mat. analiza [Probl. Math. Anal.], 9, 1984, 84–97 (in Russian)
[28] T. A. Suslina, “Asymptotics of spectrum of variational problems on solutions of elliptic equation in a domain with piecewise smooth boundary”, Zap. nauch. sem. LOMI [Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci.], 147, 1985, 179–183 (in Russian) | MR | Zbl
[29] T. A. Suslina, Asymptotics of spectrum of some problems related to oscillations of fluids, Dep. to VINITI 21.11.85, No. 8058-B, Leningrad Electrotech. Inst. Commun., Leningrad, 1985 (in Russian)
[30] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-Adjoint Problems for an Ideal Fluid, Birkhäuser, Basel–Boston–Berlin, 2001 | MR | Zbl
[31] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR | Zbl
[32] Metivier G., “Valeurs propres d'opérateurs définis par la restriction de systèmes variationnels à des sous-espaces”, J. Math. Pures Appl. (9), 57:2 (1978), 133–156 | MR | Zbl