Existence of weak solution of the aggregation integro-differential equation
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 557-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we investigate the mixed problem for anisotropic integro-differential equation with variable nonlinearity indices. Using the discretization method with respect to time, we prove the existence of a weak solution in a bounded cylinder. We give an estimate of the lifetime of the solition.
@article{CMFD_2017_63_4_a1,
     author = {V. F. Vildanova and F. Kh. Mukminov},
     title = {Existence of weak solution of the aggregation integro-differential equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {557--572},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a1/}
}
TY  - JOUR
AU  - V. F. Vildanova
AU  - F. Kh. Mukminov
TI  - Existence of weak solution of the aggregation integro-differential equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 557
EP  - 572
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a1/
LA  - ru
ID  - CMFD_2017_63_4_a1
ER  - 
%0 Journal Article
%A V. F. Vildanova
%A F. Kh. Mukminov
%T Existence of weak solution of the aggregation integro-differential equation
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 557-572
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a1/
%G ru
%F CMFD_2017_63_4_a1
V. F. Vildanova; F. Kh. Mukminov. Existence of weak solution of the aggregation integro-differential equation. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 557-572. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a1/

[1] Yu. A. Alkhutov, V. V. Zhikov, “Theorems on existence and uniqueness of solutions of parabolic equations with variable nonlinearity order”, Mat. sb. [Math. Digest], 205:3 (2014), 3–14 (in Russian) | DOI | MR | Zbl

[2] A. O. Belyakov, A. A. Davydov, “Optimization of efficiency of cyclic use of renewable resource”, Tr. IMM UrO RAN [Proc. Inst. Math. Mech. Ural Branch Russ. Acad. Sci.], 22, no. 2, 2016, 38–46 (in Russian) | DOI | MR

[3] N. Dunford, J. T. Schwartz, Linear Operators, Part 1: General Theory, IL, M., 1962, Russian translation

[4] S. N. Kruzhkov, “First-order quasilinear equationa with many independent variables”, Mat. sb. [Math. Digest], 81(123):2 (1970), 228–255 (in Russian) | MR | Zbl

[5] J.-L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Mir, M., 1971, Russian translation | MR

[6] F. Kh. Mukminov, “Uniqueness of renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Mat. sb. [Math. Digest], 208:8 (2017), 1187–1206 (in Russian) | DOI | MR | Zbl

[7] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Nauka, Moscow, 1988 (in Russian) | MR

[8] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR | Zbl

[9] Bertozzi A., Slepcev D., “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion”, Commun. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl

[10] Blanchet A., Carrillo J. A., Laurencot P., “Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions”, Calc. Var., 35 (2009), 133–168 | DOI | MR | Zbl

[11] Boi S., Capasso V., Morale D., “Modeling the aggregative behavior of ants of the species Polyergus rufescens”, Nonlinear Anal. Real World Appl., 1 (2000), 163–176 | DOI | MR | Zbl

[12] Burger M., Fetecau R. C., Huang Y., “Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion”, SIAM J. Appl. Dyn. Syst., 13:1 (2014), 397–424 | DOI | MR | Zbl

[13] Carrillo J. A., Hittmeir S., Volzone B., Yao Y., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, 2016, arXiv: 1603.07767v1[math.ap]

[14] Carrillo J., Wittbold P., “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems”, J. Differ. Equ., 156 (1999), 93–121 | DOI | MR | Zbl

[15] Eftimie R., Vries G., Lewis M. A., Lutscher F., “Modeling group formation and activity patterns in self-organizing collectives of individuals”, Bull. Math. Biol., 146:69 (2007), 1537–1565 | DOI | MR

[16] Fan X., “Anisotropic variable exponent Sobolev spaces and $p(x)$-Laplacian equations”, Complex Var. Elliptic Equ., 56:7–9 (2011), 623–642 | DOI | MR | Zbl

[17] Milewski P. A., Yang X., “A simple model for biological aggregation with asymmetric sensing”, Commun. Math. Sci., 6 (2008), 397–416 | DOI | MR | Zbl

[18] Morale D., Capasso V., Oelschlager K., “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol., 50 (2005), 49–66 | DOI | MR | Zbl

[19] Otto F., “L1-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differ. Equ., 131 (1996), 20–38 | DOI | MR | Zbl

[20] Topaz C. M., Bertozzi A. L., “Swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math., 65 (2004), 152–174 | DOI | MR | Zbl

[21] Topaz C. M., Bertozzi A. L., Lewis M. A., “A nonlocal continuum model for biological aggregation”, Bull. Math. Biol., 68 (2006), 1601–1623 | DOI | MR | Zbl