Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a8, author = {M. B. Sevryuk}, title = {Partial preservation of frequencies and floquet exponents of invariant tori in the reversible {KAM} context~2}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {516--541}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a8/} }
TY - JOUR AU - M. B. Sevryuk TI - Partial preservation of frequencies and floquet exponents of invariant tori in the reversible KAM context~2 JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 516 EP - 541 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a8/ LA - ru ID - CMFD_2017_63_3_a8 ER -
%0 Journal Article %A M. B. Sevryuk %T Partial preservation of frequencies and floquet exponents of invariant tori in the reversible KAM context~2 %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 516-541 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a8/ %G ru %F CMFD_2017_63_3_a8
M. B. Sevryuk. Partial preservation of frequencies and floquet exponents of invariant tori in the reversible KAM context~2. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 516-541. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a8/
[1] G. E. Bredon, Introduction to Compact Transformation Groups, Nauka, Moscow, 1980, (Russian translation) | MR
[2] R. de la Llave, A tutorial on KAM theory, In-t komp. issl., Moscow–Izhevsk, 2003, (Russian translation) | MR
[3] P. E. Conner, E. E. Floyd, Smooth Periodic Mappings, Mir, Moscow, 1969, (Russian translation)
[4] J. E. Marsden, M. McCracken, The Hopf Bifurcation and Its Applications, Mir, Moscow, 1980, (Russian translation) | MR
[5] J. Moser, “On the expansion of quasi-periodic motions in convergent power series”, Progr. Math. Sci., 24:2 (1969), 165–211 (in Russian) | MR
[6] S. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Mir, Moscow, 1980, (Russian translation) | MR
[7] M. B. Sevryuk, “Linear reversible systems and their versal deformations”, Proc. Petrovskii Semin., 15, 1991, 33–54 (in Russian) | MR
[8] M. B. Sevryuk, “Some problems of the KAM-theory: conditionally-periodic motions in typical systems”, Progr. Math. Sci., 50:2 (1995), 111–124 (in Russian) | MR | Zbl
[9] M. B. Sevryuk, “Partial preservation of frequencies and Floquet exponents in KAM theory”, Proc. Math. Inst. Russ. Acad. Sci., 259, 2007, 174–202 (in Russian) | MR | Zbl
[10] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006 | MR
[11] Bredon G. E., Introduction to Compact Transformation Groups, Academic Press, New York, 1972 | MR
[12] Broer H. W., Ciocci M. C., Hanßmann H., Vanderbauwhede A., “Quasi-periodic stability of normally resonant tori”, Phys. D, 238:3 (2009), 309–318 | DOI | MR
[13] Broer H. W., Hoo J., Naudot V., “Normal linear stability of quasi-periodic tori”, J. Differ. Equ, 232:2 (2007), 355–418 | DOI | MR
[14] Broer H. W., Huitema G. B., “Unfoldings of quasi-periodic tori in reversible systems”, J. Dynam. Differ. Equ., 7:1 (1995), 191–212 | DOI | MR
[15] Broer H. W., Huitema G. B., Sevryuk M. B., “Families of quasi-periodic motions in dynamical systems depending on parameters”, Nonlinear Dynamical Systems and Chaos, Birkhäuser, Basel, 1996, 171–211 | DOI | MR
[16] Broer H. W., Huitema G. B., Sevryuk M. B., Quasi-Periodic Motions in Families of Dynamical Systems. Order amidst Chaos, Springer, Berlin, 1996 | MR
[17] Broer H. W., Huitema G. B., Takens F., “Unfoldings of quasi-periodic tori”, Unfoldings and bifurcations of quasi-periodic tori, Mem. Am. Math. Soc, 83, no. 421, 1990, 1–81 | MR
[18] Broer H. W., Sevryuk M. B., “KAM theory: Quasi-periodicity in dynamical systems”, Handbook of Dynamical Systems, v. 3, Elsevier, Amsterdam, 2010, 249–344
[19] Calleja R. C., Celletti A., de la Llave R., “Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems”, Nonlinearity, 30:8 (2017), 3151–3202 | DOI | MR
[20] Chow S.-N., Li Y., Yi Y., “Persistence of invariant tori on submanifolds in Hamiltonian systems”, J. Nonlinear Sci., 12:6 (2002), 585–617 | DOI | MR
[21] Conner P. E., Floyd E. E., Differentiable Periodic Maps, Academic Press, New York; Springer, Berlin, 1964 | MR
[22] De la Llave R., “A tutorial on KAM theory”, Proc. Symp. Pure Math., 69 (2001), 175–292 | DOI | MR
[23] Dumas H. S., The KAM Story. A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory, World Scientific, Hackensack, 2014 | MR
[24] González-Enríquez A., Haro À., de la Llave R., Singularity theory for non-twist KAM tori, Mem. Am. Math. Soc., 227, no. 1067, 2014, 115 pp. | MR
[25] Hanßmann H., “Non-degeneracy conditions in KAM theory”, Indag. Math. (N.S.), 22:3–4 (2011), 241–256 | MR
[26] Haro À., Canadell M., Figueras J.-L., Luque A., Mondelo J.-M., The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, Springer, Cham, 2016 | MR
[27] Hoveijn I., “Versal deformations and normal forms for reversible and Hamiltonian linear systems”, J. Differ. Equ., 126:2 (1996), 408–442 | DOI | MR
[28] Kong Y., Xu J., “Persistence of lower dimensional hyperbolic tori for reversible system”, Appl. Math. Comput., 236 (2014), 408–421 | MR
[29] Lamb J. S. W., Roberts J. A. G., “Time-reversal symmetry in dynamical systems: a survey”, Phys. D, 112:1–2 (1998), 1–39 | DOI | MR
[30] Li Y., Yi Y., “Persistence of hyperbolic tori in Hamiltonian systems”, J. Differ. Equ., 208:2 (2005), 344–387 | DOI | MR
[31] Liu Zh., “Persistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems”, Nonlinear Anal., 61:8 (2005), 1319–1342 | DOI | MR
[32] Marsden J. E., McCracken M., The Hopf Bifurcation and Its Applications, Springer, New York, 1976 | MR
[33] Montgomery D., Zippin L., Topological Transformation Groups, R. E. Krieger Publishing, Huntington, 1974 | MR
[34] Morris S. A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge Univ. Press, Cambridge, 1977 | MR
[35] Moser J., “Convergent series expansions for quasi-periodic motions”, Math. Ann, 169:1 (1967), 136–176 | DOI | MR
[36] Quispel G. R. W., Sevryuk M. B., “KAM theorems for the product of two involutions of different types”, Chaos, 3:4 (1993), 757–769 | DOI | MR
[37] Roberts J. A. G., Quispel G. R. W., “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems”, Phys. Rep., 216:2–3 (1992), 63–177 | DOI | MR
[38] Rüssmann H., “Invariant tori in non-degenerate nearly integrable Hamiltonian systems”, Regul. Chaotic Dyn., 6:2 (2001), 119–204 | DOI | MR
[39] Rüssmann H., “Addendum to ‘Invariant tori in non-degenerate nearly integrable Hamiltonian systems’ ”, Regul. Chaotic Dyn., 10:1 (2005), 21–31 | DOI | MR
[40] Sevryuk M. B., Reversible Systems, Springer, Berlin, 1986 | MR
[41] Sevryuk M. B., “The iteration-approximation decoupling in the reversible KAM theory”, Chaos, 5:3 (1995), 552–565 | DOI | MR
[42] Sevryuk M. B., “Excitation of elliptic normal modes of invariant tori in Hamiltonian systems”, Topics in Singularity Theory, Am. Math. Soc., Providence, 1997, 209–218 | MR
[43] Sevryuk M. B., “Excitation of elliptic normal modes of invariant tori in volume preserving flows”, Global Analysis of Dynamical Systems, Inst. Phys., Bristol, 2001, 339–352 | MR
[44] Sevryuk M. B., “Partial preservation of frequencies in KAM theory”, Nonlinearity, 19:5 (2006), 1099–1140 | DOI | MR
[45] Sevryuk M. B., “Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method”, Discrete Contin. Dyn. Syst., 18:2–3 (2007), 569–595 | DOI | MR
[46] Sevryuk M. B., “KAM tori: persistence and smoothness”, Nonlinearity, 21:10 (2008), T177–T185 | DOI | MR
[47] Sevryuk M. B., “The reversible context 2 in KAM theory: the first steps”, Regul. Chaotic Dyn., 16:1–2 (2011), 24–38 | DOI | MR
[48] Sevryuk M. B., “KAM theory for lower dimensional tori within the reversible context 2”, Mosc. Math. J., 12:2 (2012), 435–455 | MR | Zbl
[49] Sevryuk M. B., “Quasi-periodic perturbations within the reversible context 2 in KAM theory”, Indag. Math. (N.S.), 23:3 (2012), 137–150 | DOI | MR
[50] Sevryuk M. B., “Whitney smooth families of invariant tori within the reversible context 2 of KAM theory”, Regul. Chaotic Dyn., 21:6 (2016), 599–620 | DOI | MR
[51] Sevryuk M. B., “Herman's approach to quasi-periodic perturbations in the reversible KAM context 2”, Mosc. Math. J., 17:4 (2017), 803–823 | MR
[52] Shih C. W., “Normal forms and versal deformations of linear involutive dynamical systems”, Chinese J. Math., 21:4 (1993), 333–347 | MR
[53] Tao T., Poincaré's Legacies, Pages from Year Two of a Mathematical Blog, Part I, Am. Math. Soc., Providence, 2009 | MR
[54] Tits J., ØE uvres, Collected Works, v. IV, Eur. Math. Soc., Zürich, 2013 | MR
[55] Wagener F., “A parametrised version of Moser's modifying terms theorem”, Discrete Contin. Dyn. Syst. Ser. S, 3:4 (2010), 719–768 | DOI | MR
[56] Wang X., Xu J., Zhang D., “Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems”, Discrete Contin. Dyn. Syst. Ser. B, 14:3 (2010), 1237–1249 | DOI | MR
[57] Wang X., Xu J., Zhang D., “A new KAM theorem for the hyperbolic lower dimensional tori in reversible systems”, Acta Appl. Math., 143 (2016), 45–61 | DOI | MR
[58] Wang X., Xu J., Zhang D., “A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems”, Discrete Contin. Dyn. Syst., 37:4 (2017), 2141–2160 | MR
[59] Xu J., Lu X., “General KAM theorems and their applications to invariant tori with prescribed frequencies”, Regul. Chaotic Dyn., 21:1 (2016), 107–125 | DOI | MR | Zbl
[60] Yoccoz J.-C., “Travaux de Herman sur les tores invariants”, Astérisque, 206 (1992), 311–344
[61] Zhang D., Xu J., Wu H., “On invariant tori with prescribed frequency in Hamiltonian systems”, Adv. Nonlinear Stud., 16:4 (2016), 719–735 | DOI | MR