On the volume formula for hyperbolic $4$-dimensional simplex
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 494-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we derive an explicit formula for the volume of abritrary hyperbolic $4$-simplex depending on vertices coordinates.
@article{CMFD_2017_63_3_a6,
     author = {V. A. Krasnov},
     title = {On the volume formula for hyperbolic $4$-dimensional simplex},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {494--503},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the volume formula for hyperbolic $4$-dimensional simplex
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 494
EP  - 503
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a6/
LA  - ru
ID  - CMFD_2017_63_3_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the volume formula for hyperbolic $4$-dimensional simplex
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 494-503
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a6/
%G ru
%F CMFD_2017_63_3_a6
V. A. Krasnov. On the volume formula for hyperbolic $4$-dimensional simplex. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 494-503. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a6/

[1] E. B. Vinberg, “Volumes of non-Euclid polyhedrons”, Progr. Math. Sci., 48:2 (1993), 17–46 (in Russian) | MR | Zbl

[2] N. I. Lobachevskiy, Imaginary Geometry, Compl. Set of Works, v. 3, Moscow–Leningrad, 1949 (in Russian)

[3] I. Kh. Sabitov, “On one method for computation of volumes of solids”, Seberian Electron. Math. Bull., 10 (2013), 615–626 (in Russian) | MR

[4] I. Kh. Sabitov, “Hyperbolic tetrahedron: computation of volume with application to the proof of the Schläfli formula”, Model. Anal. Inform. Syst., 20:6 (2013), 149–161 (in Russian)

[5] Bolyai J., “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987

[6] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR

[7] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Rus. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl

[8] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc. (N.S.), 6:1 (1982), 307–332 | DOI | MR

[9] Murakami J., The volume formulas for a spherical tetrahedron, 2011, arXiv: 1011.2584v4 | MR

[10] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1–2 (2005), 153–163 | DOI | MR

[11] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Commun. Anal. Geom., 13 (2005), 379–400 | DOI | MR

[12] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950, 167–387 | DOI