Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a6, author = {V. A. Krasnov}, title = {On the volume formula for hyperbolic $4$-dimensional simplex}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {494--503}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a6/} }
V. A. Krasnov. On the volume formula for hyperbolic $4$-dimensional simplex. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 494-503. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a6/
[1] E. B. Vinberg, “Volumes of non-Euclid polyhedrons”, Progr. Math. Sci., 48:2 (1993), 17–46 (in Russian) | MR | Zbl
[2] N. I. Lobachevskiy, Imaginary Geometry, Compl. Set of Works, v. 3, Moscow–Leningrad, 1949 (in Russian)
[3] I. Kh. Sabitov, “On one method for computation of volumes of solids”, Seberian Electron. Math. Bull., 10 (2013), 615–626 (in Russian) | MR
[4] I. Kh. Sabitov, “Hyperbolic tetrahedron: computation of volume with application to the proof of the Schläfli formula”, Model. Anal. Inform. Syst., 20:6 (2013), 149–161 (in Russian)
[5] Bolyai J., “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987
[6] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR
[7] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Rus. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[8] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc. (N.S.), 6:1 (1982), 307–332 | DOI | MR
[9] Murakami J., The volume formulas for a spherical tetrahedron, 2011, arXiv: 1011.2584v4 | MR
[10] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1–2 (2005), 153–163 | DOI | MR
[11] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Commun. Anal. Geom., 13 (2005), 379–400 | DOI | MR
[12] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950, 167–387 | DOI