Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a4, author = {V. Z. Grines and E. V. Zhuzhoma and O. V. Pochinka}, title = {Dynamical systems and topology of magnetic fields in conducting medium}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {455--474}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/} }
TY - JOUR AU - V. Z. Grines AU - E. V. Zhuzhoma AU - O. V. Pochinka TI - Dynamical systems and topology of magnetic fields in conducting medium JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 455 EP - 474 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/ LA - ru ID - CMFD_2017_63_3_a4 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Zhuzhoma %A O. V. Pochinka %T Dynamical systems and topology of magnetic fields in conducting medium %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 455-474 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/ %G ru %F CMFD_2017_63_3_a4
V. Z. Grines; E. V. Zhuzhoma; O. V. Pochinka. Dynamical systems and topology of magnetic fields in conducting medium. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 455-474. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/
[1] H. Alfvén, C.-G. Fälthammar, Cosmical Electrodynamics, Mir, Moscow, 1967, (Russian translation)
[2] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Totals Sci. Tech. Contemp. Probl. Math. Fundam. Direct., 66, 1991, 12–99 (in Russian) | MR | Zbl
[3] V. I. Arnol'd, B. A. Khesin, Topological Methods in Hydrodynamics, MTsNMO, Moscow, 2007 (in Russian)
[4] S. I. Vaynshteyn, Ya. B. Zel'dovich, “On genesis of magnetic fields in astrophysics (Turbulent mechanisms “dynamo”)”, Progr. Phys. Sci., 106 (1972), 431–457 (in Russian) | DOI
[5] V. S. Gorbachev, S. R. Kel'ner, B. V. Somov, A. S. Shvarts, “New topological approach to the problem of trigger of solar flares”, Astron. J., 65 (1988), 601–612 (in Russian)
[6] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, S. Kh. Zinina, “Heteroclinic curves of Morse–Smale diffeomorphisms and separators in the plasma magnetic field”, Nonlinear Dynamics, 10:4 (2014), 427–438 (in Russian)
[7] “V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev”, Rep. Russ. Acad. Sci., 382:6 (2002), 730–733 (in Russian) | MR | Zbl
[8] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Math. Inst. Russ. Acad. Sci., 271, 2010, 111–133 (in Russian) | MR
[9] V. Z. Grines, O. V. Pochinka, Introduction to Topological Classification of Cascades on Manifolds of Dimension Two and Three, NITs “Regul. i khaot. dinamika”, Moscow–Izhevsk, 2011 (in Russian)
[10] V. Z. Grines and O. V. Pochinka, “Morse–Smale cascades on 3-manifolds”, Progr. Math. Sci., 68:1 (2013), 129–188 (in Russian) | DOI | MR | Zbl
[11] E. V. Zhuzhoma, N. V. Isaenkova, “On zero-measure solenoidal basic sets”, Math. Digest, 202:3 (2011), 47–68 (in Russian) | DOI | MR | Zbl
[12] E. V. Zhuzhoma, N. V. Isaenkova, V. S. Medvedev, “On topological structure of magnetic field of areas”, Nonlinear Dynamics, 13:3 (2017), 399–412 (in Russian) | DOI | MR
[13] Ya. B. Zel'dovich, A. A. Ruzmaykin, “Hydromagnetic dynamo as a source of planetary, solar, and galactic magnetism”, Progr. Phys. Sci., 152 (1987), 263–284 (in Russian) | DOI
[14] A. Katok, B. Khasselblat, Introduction to the Theory of Dynamical Systems, Faktorial, Moscow, 1999 (in Russian)
[15] T. G. Cowling, Magnetohydrodynamics, IL, Moscow, 1959, (Russian translation)
[16] L. D. Landau, E. M. Lifshits, Theoretical Physics, in 10 Volumes, v. VIII, Continuum Electrodynamics, Fizmatlit, Moscow, 2005 (in Russian)
[17] M. M. Molodenskiy, S. I. Syrovatskiy, “Magnetic fields of active areas and their zero points”, Astron. J., 54 (1977), 1293–1304 (in Russian)
[18] S. A. Molchanov, A. A. Ruzmaykin, D. D. Sokolov, “Cinematic dynamo in random flow”, Progr. Phys. Sci., 145 (1985), 593–628 (in Russian) | DOI
[19] G. Moffat, Excitation of Magnetic Field in Conductive Medium, Mir, Moscow, 1980, (Russian translation)
[20] Z. Nitecki, Differential Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms, Mir, Moscow, 1975, (Russian translation) | MR
[21] E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications, FML, Moscow, 2005, (Russian translation)
[22] D. D. Sokolov, “Problems of magnetic dynamo”, Progr. Phys. Sci., 185 (2015), 643–648 (in Russian) | DOI
[23] D. D. Sokolov, R. A. Stepanov, P. G. Frik, “Dynamo: from astrophysic models to laboratory experiment”, Progr. Phys. Sci., 184 (2014), 313–335 (in Russian) | DOI
[24] S. I. Syrovatskiy, “Magnetohydrodynamics”, Progr. Phys. Sci., 62:3 (1957), 247–303 (in Russian) | DOI
[25] W. M. Elsässer, “Magnetohydrodynamics”, Progr. Phys. Sci., 64 (1958), 529–588 (in Russian) | DOI
[26] Alfven H., “On sunspots and the solar cycle”, Arc. F. Mat. Ast. Fys., 29A (1943), 1–17
[27] Alfven H., “Electric currents in cosmic plasmas”, Rev. Geophys. Sapce Phys., 15 (1977), 271 | DOI
[28] Baum P., Bratenahl A., “Flux linkages of bipolar sunspot groups: a computer study”, Solar Phys., 67 (1980), 245–258 | DOI
[29] Beveridge C., Priest E. R., Brown D. S., “Magnetic topologies due to two bipolar regions”, Solar Phys., 209:2 (2002), 333–347 | DOI
[30] Beveridge C., Priest E. R., Brown D. S., “Magnetic topologies in the solar corona due to four discrete photospheric flux regions”, Geophys. Astrophys. Fluid Dyn., 98:5 (2004), 429–445 | DOI | MR
[31] Bonatti Ch., Grines V., Medvedev V., Pecou E., “Three-dimensional manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117 (2002), 335–344 | DOI | MR
[32] Bothe H., “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR
[33] Brown D. S., Priest E. R., “The topological behaviour of 3D null points in the Sun's corona”, Astron. Astrophys., 367 (2001), 339 | DOI
[34] Childress S., Gilbert A. D., Stretch, Twist, Fold: the Fast Dynamo, Springer, Berlin–Heidelberg–N.Y., 1995
[35] Close R. M., Parnell C. E., Priest E. R., “Domain structures in complex 3D magnetic fields”, Geophys. Astrophys. Fluid Dyn., 99:6 (2005), 513–534 | DOI | MR
[36] Duvaut G., Lions J. L., “Inéquations en thermoélasticité et magnétohydrodynamique”, Arch. Ration. Mech. Anal., 46 (1972), 241–279 | DOI | MR
[37] Elsasser W. M., “Magnetohydrodynamics”, Am. J. Phys., 23 (1955), 590 | DOI
[38] Fomenko A. T., Differential Geometry and Topology, Plenum Publ. Corp., N.Y.–London, 1987 | MR
[39] Grines V., Medvedev T., Pochinka O., Dynamical Systems on 2- and 3-Manifolds, Springer, Cham, 2016 | MR
[40] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D: Nonlinear Phenom., 294 (2015), 1–5 | DOI | MR
[41] Grines V. Z., Pochinka O. V., “Morse–Smale cascades on 3-manifolds”, Russ. Math. Surv., 68:1 (2013), 117–173 | DOI | MR | Zbl
[42] Grines V., Pochinka O., “Topological classification of global magnetic fields in the solar corona”, Dyn. Syst. (to appear)
[43] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge–N.Y., 1995 | MR
[44] Klapper I., Young L.-S., “Rigorous bounds of the fast dynamo growth rate involving topological entropy”, Commun. Math. Phys., 173 (1995), 623–646 | DOI | MR
[45] Longcope D. W., “Topological and current ribbons: a model for current, reconnection anf flaring in a complex, evolving corona”, Solar Phys., 169 (1996), 91–121 | DOI
[46] Maclean R. C., Beveridge C., Hornig G., Priest E. R., “Coronal magnetic topologies in a spherical geometry, I. Two bipolar flux sources”, Solar Phys., 235:1–2 (2006), 259–280 | DOI
[47] Maclean R., Beveridge C., Longcope D., Brown D., Priest E., “A topological analysis of the magnetic breakout model for an eruptive solar flare”, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 461 (2005), 2099 | DOI | MR
[48] Maclean R., Beveridge C., Priest E., “Coronal magnetic topologies in a spherical geometry, II. Four balanced flux sources”, Solar Phys., 238 (2006), 13–27 | DOI
[49] Maclean R. C., Priest E. R., “Topological aspects of global magnetic field behaviour in the solar corona”, Solar Phys., 243:2 (2007), 171–191 | DOI
[50] Moffatt H., Magnetic Field Generation in Electrically Conducting Fields, Cambridge University Press, Cambridge, 1978
[51] Oreshina A. V., Oreshina I. V., Somov B. V., “Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18”, Astron. Astrophys., 538 (2012), 138 | DOI
[52] Parker E. N., “Hydromagnetic dynamo models”, Astrophys. J., 122 (1955), 293–314 | DOI | MR
[53] Poincare H., “Sur les courbes definies par une equation differentielles, III”, J. Math. Pures Appl., 4:1 (1882), 167–244
[54] Priest E. R., Solar Magnetohydrodynamics, Springer, Dordrecht, 1982
[55] Priest E., Bungey T., Titov V., “The 3D topology and interaction of complex magnetic flux systems”, Geophys. Astrophys. Fluid Dyn., 84 (1997), 127–163 | DOI | MR
[56] Priest E., Forbes T., Magnetic Reconnection: MHD Theory and Applications, Cambridge Univ. Press, Cambridge, 2005 | MR
[57] Priest E., Schriver C., “Aspects of three-dimensional magnetic reconnection”, Solar Phys., 190 (1999), 1–24 | DOI | MR
[58] Priest E. R., Titov V. S., “Magnetic reconnection at three-dimensional null points”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 354 (1996), 2951–2992 | DOI | MR
[59] Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge, “On the local $C^{1,\alpha}$ solution of ideal magneto-hydrodynamical equations”, Discrete Contin. Dyn. Syst., 37:4 (2007), 2103–2118 | MR
[60] Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares, Springer, N.Y., 2013
[61] Smale S., “Diffeomorphisms with many periodic points”, Matematika, 11:4 (1967), 88–106
[62] Smale S., “Differentiable dynamical systems”, Bull. Am. Math. Soc., 73 (1967), 741–817 | DOI | MR
[63] Sweet P. A., “The production of high energy particles in solar flares”, Nuovo Cimento, 8, Suppl. 2 (1958), 188–196 | DOI