Dynamical systems and topology of magnetic fields in conducting medium
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 455-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss application of contemporary methods of the theory of dynamical systems with regular and chaotic hyperbolic dynamics to investigation of topological structure of magnetic fields in conducting media. For substantial classes of magnetic fields, we consider well-known physical models allowing us to reduce investigation of such fields to study of vector fields and Morse–Smale diffeomorphisms as well as diffeomorphisms with nontrivial basic sets satisfying the $A$ axiom introduced by Smale. For the point-charge magnetic field model, we consider the problem of separator playing an important role in the reconnection processes and investigate relations between its singularities. We consider the class of magnetic fields in the solar corona and solve the problem of topological equivalency of fields in this class. We develop a topological modification of the Zeldovich funicular model of the nondissipative cinematic dynamo, constructing a hyperbolic diffeomorphism with chaotic dynamics that is conservative in the neighborhood of its transitive invariant set.
@article{CMFD_2017_63_3_a4,
     author = {V. Z. Grines and E. V. Zhuzhoma and O. V. Pochinka},
     title = {Dynamical systems and topology of magnetic fields in conducting medium},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {455--474},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - O. V. Pochinka
TI  - Dynamical systems and topology of magnetic fields in conducting medium
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 455
EP  - 474
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/
LA  - ru
ID  - CMFD_2017_63_3_a4
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A O. V. Pochinka
%T Dynamical systems and topology of magnetic fields in conducting medium
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 455-474
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/
%G ru
%F CMFD_2017_63_3_a4
V. Z. Grines; E. V. Zhuzhoma; O. V. Pochinka. Dynamical systems and topology of magnetic fields in conducting medium. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 455-474. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a4/

[1] H. Alfvén, C.-G. Fälthammar, Cosmical Electrodynamics, Mir, Moscow, 1967, (Russian translation)

[2] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Totals Sci. Tech. Contemp. Probl. Math. Fundam. Direct., 66, 1991, 12–99 (in Russian) | MR | Zbl

[3] V. I. Arnol'd, B. A. Khesin, Topological Methods in Hydrodynamics, MTsNMO, Moscow, 2007 (in Russian)

[4] S. I. Vaynshteyn, Ya. B. Zel'dovich, “On genesis of magnetic fields in astrophysics (Turbulent mechanisms “dynamo”)”, Progr. Phys. Sci., 106 (1972), 431–457 (in Russian) | DOI

[5] V. S. Gorbachev, S. R. Kel'ner, B. V. Somov, A. S. Shvarts, “New topological approach to the problem of trigger of solar flares”, Astron. J., 65 (1988), 601–612 (in Russian)

[6] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, S. Kh. Zinina, “Heteroclinic curves of Morse–Smale diffeomorphisms and separators in the plasma magnetic field”, Nonlinear Dynamics, 10:4 (2014), 427–438 (in Russian)

[7] “V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev”, Rep. Russ. Acad. Sci., 382:6 (2002), 730–733 (in Russian) | MR | Zbl

[8] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Math. Inst. Russ. Acad. Sci., 271, 2010, 111–133 (in Russian) | MR

[9] V. Z. Grines, O. V. Pochinka, Introduction to Topological Classification of Cascades on Manifolds of Dimension Two and Three, NITs “Regul. i khaot. dinamika”, Moscow–Izhevsk, 2011 (in Russian)

[10] V. Z. Grines and O. V. Pochinka, “Morse–Smale cascades on 3-manifolds”, Progr. Math. Sci., 68:1 (2013), 129–188 (in Russian) | DOI | MR | Zbl

[11] E. V. Zhuzhoma, N. V. Isaenkova, “On zero-measure solenoidal basic sets”, Math. Digest, 202:3 (2011), 47–68 (in Russian) | DOI | MR | Zbl

[12] E. V. Zhuzhoma, N. V. Isaenkova, V. S. Medvedev, “On topological structure of magnetic field of areas”, Nonlinear Dynamics, 13:3 (2017), 399–412 (in Russian) | DOI | MR

[13] Ya. B. Zel'dovich, A. A. Ruzmaykin, “Hydromagnetic dynamo as a source of planetary, solar, and galactic magnetism”, Progr. Phys. Sci., 152 (1987), 263–284 (in Russian) | DOI

[14] A. Katok, B. Khasselblat, Introduction to the Theory of Dynamical Systems, Faktorial, Moscow, 1999 (in Russian)

[15] T. G. Cowling, Magnetohydrodynamics, IL, Moscow, 1959, (Russian translation)

[16] L. D. Landau, E. M. Lifshits, Theoretical Physics, in 10 Volumes, v. VIII, Continuum Electrodynamics, Fizmatlit, Moscow, 2005 (in Russian)

[17] M. M. Molodenskiy, S. I. Syrovatskiy, “Magnetic fields of active areas and their zero points”, Astron. J., 54 (1977), 1293–1304 (in Russian)

[18] S. A. Molchanov, A. A. Ruzmaykin, D. D. Sokolov, “Cinematic dynamo in random flow”, Progr. Phys. Sci., 145 (1985), 593–628 (in Russian) | DOI

[19] G. Moffat, Excitation of Magnetic Field in Conductive Medium, Mir, Moscow, 1980, (Russian translation)

[20] Z. Nitecki, Differential Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms, Mir, Moscow, 1975, (Russian translation) | MR

[21] E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications, FML, Moscow, 2005, (Russian translation)

[22] D. D. Sokolov, “Problems of magnetic dynamo”, Progr. Phys. Sci., 185 (2015), 643–648 (in Russian) | DOI

[23] D. D. Sokolov, R. A. Stepanov, P. G. Frik, “Dynamo: from astrophysic models to laboratory experiment”, Progr. Phys. Sci., 184 (2014), 313–335 (in Russian) | DOI

[24] S. I. Syrovatskiy, “Magnetohydrodynamics”, Progr. Phys. Sci., 62:3 (1957), 247–303 (in Russian) | DOI

[25] W. M. Elsässer, “Magnetohydrodynamics”, Progr. Phys. Sci., 64 (1958), 529–588 (in Russian) | DOI

[26] Alfven H., “On sunspots and the solar cycle”, Arc. F. Mat. Ast. Fys., 29A (1943), 1–17

[27] Alfven H., “Electric currents in cosmic plasmas”, Rev. Geophys. Sapce Phys., 15 (1977), 271 | DOI

[28] Baum P., Bratenahl A., “Flux linkages of bipolar sunspot groups: a computer study”, Solar Phys., 67 (1980), 245–258 | DOI

[29] Beveridge C., Priest E. R., Brown D. S., “Magnetic topologies due to two bipolar regions”, Solar Phys., 209:2 (2002), 333–347 | DOI

[30] Beveridge C., Priest E. R., Brown D. S., “Magnetic topologies in the solar corona due to four discrete photospheric flux regions”, Geophys. Astrophys. Fluid Dyn., 98:5 (2004), 429–445 | DOI | MR

[31] Bonatti Ch., Grines V., Medvedev V., Pecou E., “Three-dimensional manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117 (2002), 335–344 | DOI | MR

[32] Bothe H., “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR

[33] Brown D. S., Priest E. R., “The topological behaviour of 3D null points in the Sun's corona”, Astron. Astrophys., 367 (2001), 339 | DOI

[34] Childress S., Gilbert A. D., Stretch, Twist, Fold: the Fast Dynamo, Springer, Berlin–Heidelberg–N.Y., 1995

[35] Close R. M., Parnell C. E., Priest E. R., “Domain structures in complex 3D magnetic fields”, Geophys. Astrophys. Fluid Dyn., 99:6 (2005), 513–534 | DOI | MR

[36] Duvaut G., Lions J. L., “Inéquations en thermoélasticité et magnétohydrodynamique”, Arch. Ration. Mech. Anal., 46 (1972), 241–279 | DOI | MR

[37] Elsasser W. M., “Magnetohydrodynamics”, Am. J. Phys., 23 (1955), 590 | DOI

[38] Fomenko A. T., Differential Geometry and Topology, Plenum Publ. Corp., N.Y.–London, 1987 | MR

[39] Grines V., Medvedev T., Pochinka O., Dynamical Systems on 2- and 3-Manifolds, Springer, Cham, 2016 | MR

[40] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D: Nonlinear Phenom., 294 (2015), 1–5 | DOI | MR

[41] Grines V. Z., Pochinka O. V., “Morse–Smale cascades on 3-manifolds”, Russ. Math. Surv., 68:1 (2013), 117–173 | DOI | MR | Zbl

[42] Grines V., Pochinka O., “Topological classification of global magnetic fields in the solar corona”, Dyn. Syst. (to appear)

[43] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge–N.Y., 1995 | MR

[44] Klapper I., Young L.-S., “Rigorous bounds of the fast dynamo growth rate involving topological entropy”, Commun. Math. Phys., 173 (1995), 623–646 | DOI | MR

[45] Longcope D. W., “Topological and current ribbons: a model for current, reconnection anf flaring in a complex, evolving corona”, Solar Phys., 169 (1996), 91–121 | DOI

[46] Maclean R. C., Beveridge C., Hornig G., Priest E. R., “Coronal magnetic topologies in a spherical geometry, I. Two bipolar flux sources”, Solar Phys., 235:1–2 (2006), 259–280 | DOI

[47] Maclean R., Beveridge C., Longcope D., Brown D., Priest E., “A topological analysis of the magnetic breakout model for an eruptive solar flare”, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 461 (2005), 2099 | DOI | MR

[48] Maclean R., Beveridge C., Priest E., “Coronal magnetic topologies in a spherical geometry, II. Four balanced flux sources”, Solar Phys., 238 (2006), 13–27 | DOI

[49] Maclean R. C., Priest E. R., “Topological aspects of global magnetic field behaviour in the solar corona”, Solar Phys., 243:2 (2007), 171–191 | DOI

[50] Moffatt H., Magnetic Field Generation in Electrically Conducting Fields, Cambridge University Press, Cambridge, 1978

[51] Oreshina A. V., Oreshina I. V., Somov B. V., “Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18”, Astron. Astrophys., 538 (2012), 138 | DOI

[52] Parker E. N., “Hydromagnetic dynamo models”, Astrophys. J., 122 (1955), 293–314 | DOI | MR

[53] Poincare H., “Sur les courbes definies par une equation differentielles, III”, J. Math. Pures Appl., 4:1 (1882), 167–244

[54] Priest E. R., Solar Magnetohydrodynamics, Springer, Dordrecht, 1982

[55] Priest E., Bungey T., Titov V., “The 3D topology and interaction of complex magnetic flux systems”, Geophys. Astrophys. Fluid Dyn., 84 (1997), 127–163 | DOI | MR

[56] Priest E., Forbes T., Magnetic Reconnection: MHD Theory and Applications, Cambridge Univ. Press, Cambridge, 2005 | MR

[57] Priest E., Schriver C., “Aspects of three-dimensional magnetic reconnection”, Solar Phys., 190 (1999), 1–24 | DOI | MR

[58] Priest E. R., Titov V. S., “Magnetic reconnection at three-dimensional null points”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 354 (1996), 2951–2992 | DOI | MR

[59] Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge, “On the local $C^{1,\alpha}$ solution of ideal magneto-hydrodynamical equations”, Discrete Contin. Dyn. Syst., 37:4 (2007), 2103–2118 | MR

[60] Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares, Springer, N.Y., 2013

[61] Smale S., “Diffeomorphisms with many periodic points”, Matematika, 11:4 (1967), 88–106

[62] Smale S., “Differentiable dynamical systems”, Bull. Am. Math. Soc., 73 (1967), 741–817 | DOI | MR

[63] Sweet P. A., “The production of high energy particles in solar flares”, Nuovo Cimento, 8, Suppl. 2 (1958), 188–196 | DOI