Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a0, author = {D. I. Borisov}, title = {On lacunas in the lower part of the spectrum of the periodic magnetic operator in a~strip}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {373--391}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a0/} }
TY - JOUR AU - D. I. Borisov TI - On lacunas in the lower part of the spectrum of the periodic magnetic operator in a~strip JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 373 EP - 391 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a0/ LA - ru ID - CMFD_2017_63_3_a0 ER -
%0 Journal Article %A D. I. Borisov %T On lacunas in the lower part of the spectrum of the periodic magnetic operator in a~strip %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 373-391 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a0/ %G ru %F CMFD_2017_63_3_a0
D. I. Borisov. On lacunas in the lower part of the spectrum of the periodic magnetic operator in a~strip. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 373-391. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a0/
[1] D. I. Borisov, “On absence of lacunas in the lower part of Laplacian spectrum with fast alternation of boundary-value conditions in a strip”, Theor. Math. Phys. (in Russian)
[2] E. Lieb, M. Loss, Analysis, Nauchnaya kniga, Novosibirsk, 1998, (Russian translation)
[3] N. N. Senik, “Averaging of a periodic elliptic operator in a strip under various boundary conditions”, Algebra Anal., 25:4 (2013), 182–259 (in Russian) | MR | Zbl
[4] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Math. Inst. Russ. Acad. Sci., 171, 1985, 3–122 (in Russian) | MR | Zbl
[5] M. M. Skriganov, A. V. Sobolev, “Asymptotic estimates for spectral zones of periodic Schrödinger operators”, Algebra Anal., 17:1 (2005), 276–288, in Russian | MR | Zbl
[6] T. A. Suslina, “On averaging of periodic elliptic operator in a strip”, Algebra Anal., 16:1 (2004), 269–292 (in Russian) | MR | Zbl
[7] Barbatis G., Parnovski L., “Bethe–Sommerfeld conjecture for pseudo-differential perturbation”, Commun. Part. Differ. Equ., 34:4 (2009), 383–418 | DOI | MR
[8] Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincaré, 11:8 (2010), 1591–1627 | DOI | MR
[9] Borisov D., Bunoiu R., Cardone G., “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR
[10] Borisov D., Cardone G., “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A Math. Gen., 42:36 (2009), Id 365205 | DOI | MR
[11] Borisov D., Cardone G., Durante T., “Homogenization and uniform resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edin. Sec. A Math., 146:6 (2016), 1115–1158 | DOI | MR
[12] Borisov D., Cardone G., Faella L., Perugia C., “Uniform resolvent convergence for a strip with fast oscillating boundary”, J. Differ. Equ., 255:12 (2013), 4378–4402 | DOI | MR
[13] Dahlberg B. E. J., Trubowitz E., “A remark on two dimensional periodic potentials”, Comment. Math. Helv., 57:1 (1982), 130–134 | DOI | MR
[14] Helffer B., Mohamed A., “Asymptotics of the density of states for the Schrödinger operator with periodic electric potential”, Duke Math. J., 92:1 (1998), 1–60 | DOI | MR
[15] Karpeshina Y., “Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case”, Commun. Math. Phys., 251:3 (2004), 473–514 | DOI | MR
[16] Mohamed A., “Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential”, J. Math. Phys., 38:8 (1997), 4023–4051 | DOI | MR
[17] Parnovski L., “Bethe–Sommerfeld conjecture”, Ann. Henri Poincaré, 9:3 (2008), 457–508 | DOI | MR
[18] Parnovski L., Sobolev A., “On the Bethe–Sommerfeld conjecture for the polyharmonic operator”, Duke Math. J., 107:2 (2001), 209–238 | DOI | MR
[19] Parnovski L., Sobolev A. V., “Bethe–Sommerfeld conjecture for periodic operators with strong perturbations”, Invent. Math., 181:3 (2010), 467–540 | DOI | MR
[20] Skriganov M. M., Sobolev A. V., “Variation of the number of lattice points in large balls”, Acta Arith., 120:3 (2005), 245–267 | DOI | MR