Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 362-372

Voir la notice de l'article provenant de la source Math-Net.Ru

Higher-order differential operators on a finite interval with jump conditions inside the interval are studied. Properties of spectral characteristics are obtained, and completeness and expansion theorems are proved for this class of operators.
@article{CMFD_2017_63_2_a7,
     author = {V. A. Yurko},
     title = {Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {362--372},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a7/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 362
EP  - 372
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a7/
LA  - ru
ID  - CMFD_2017_63_2_a7
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 362-372
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a7/
%G ru
%F CMFD_2017_63_2_a7
V. A. Yurko. Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 362-372. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a7/