Matching spectral and initial-boundary value problems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 316-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the approach to abstract matching boundary-value problems introduced in [18], we consider matching spectral problems for one and two domains. We study in detail the arising operator pencil with self-adjoint operator coefficients. This pencil acts in a Hilbert space and depends on two parameters. Both possible cases are considered, where one parameter is spectral and the other is fixed, and properties of solutions are obtained depending on this. Also we study initial-boundary value problems of mathematical physics generating matching problems. We prove theorems on unique solvability of a strong solution ranging in the corresponding Hilbert space.
@article{CMFD_2017_63_2_a5,
     author = {K. A. Radomirskaya},
     title = {Matching spectral and initial-boundary value problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {316--339},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a5/}
}
TY  - JOUR
AU  - K. A. Radomirskaya
TI  - Matching spectral and initial-boundary value problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 316
EP  - 339
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a5/
LA  - ru
ID  - CMFD_2017_63_2_a5
ER  - 
%0 Journal Article
%A K. A. Radomirskaya
%T Matching spectral and initial-boundary value problems
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 316-339
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a5/
%G ru
%F CMFD_2017_63_2_a5
K. A. Radomirskaya. Matching spectral and initial-boundary value problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 316-339. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a5/

[1] M. S. Agranovich, “Spectral problems for strongly elliptic second-order systems in domains with smooth and nonsmooth boundaries”, Usp. mat. nauk, 57:5 (2002), 3–78 (in Russian) | DOI | MR | Zbl

[2] M. S. Agranovich, G. A. Amosov, M. Levitin, “Spectral problems for the Lamé system in smooth and nonsmooth domains with a spectral parameter in the boundary-value condition”, Ross. zh. mat. fiz., 6:3 (1999), 247–281 (in Russian) | MR | Zbl

[3] M. S. Agranovich, R. Menniken, “Spectral problems for the Helmholtz equation with a spectral parameter in the boundary-value conditions on a nonsmooth surface”, Mat. sb., 30:1 (1999), 29–68 (in Russian) | DOI | MR | Zbl

[4] T. Ya. Azizov, I. S. Iokhvidov, Essentials of Theory of Linear Operators in Spaces with Indefinite Metrics, Nauka, Moscow, 1986 (in Russian) | MR

[5] M. Sh. Birman, M. Z. Solomyak, “Asymptotics of the spectrum of differential equations”, Izv. AN SSSR. Ser. Mat., 38:6 (1974), 1362–1392 (in Russian) | MR | Zbl

[6] V. I. Voytitskiy, “The abstract Stefan spectral problem”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 19(58):2 (2006), 20–28 (in Russian) | MR

[7] V. I. Voytitskiy, “On spectral problems generated by the Stefan problem with the Gibbs–Thomson conditions”, Nelin. granich. zadachi, 17, 2007, 31–49 (in Russian) | MR

[8] V. I. Voytitskiy, N. D. Kopachevskii, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Sovrem. mat. Fundam. napravl, 34, 2009, 5–44 (in Russian) | MR

[9] I. L. Vulis, M. Z. Solomyak, “Spectral asymptotics of degenerating elliptic operators of second order”, Izv. AN SSSR. Ser. Mat., 38:6 (1974), 1362–1392 (in Russian) | MR | Zbl

[10] Dzh. Goldsteyn, Semigroups of Linear Operators and Their Applications, Vyssh. shk., Kiev, 1989 (in Russian) | MR

[11] V. I. Gorbachuk, “Dissipativnye granichnye zadachi dlya ellipticheskikh differentsial'nykh uravneniy”, Functional and numeric methods of mathematical physics, Digest Sci. Proc., Inst. Math. Mech., Kiev, 1998, 60–63 (in Russian)

[12] I. Ts. Gokhberg, M. G. Kreyn, Introduction to the Theory of Linear Nonself-adjoint Operators in a Hilbert Space, Nauka, Moscow, 1965 (in Russian) | MR

[13] N. D. Kopachevskii, Spectral Theory of Operator Pencils, Special Course, OOO “FORMA”, Simferopol', 2009 (in Russian)

[14] N. D. Kopachevskii, Integrodifferential Volterra Equations in a Hilbert Space. Special Course, FLP “O. A. Bondarenko”, Simferopol', 2012 (in Russian)

[15] N. D. Kopachevskii, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR

[16] N. D. Kopachevskiy, K. A. Radomirskaya, “Abstract mixed boundary-value conjugation problems”, Int. Sci. Conf. “Contemp. Methods Probl. Theor. Oper. Harm. Anal. Appl. – V”, Rostov-na-Donu, 2015, 211 (in Russian)

[17] N. D. Kopachevskiy, K. A. Radomirskaya, “Abstract boundary-value and spectral conjugation problems”, XXVI Crimean Autumn Math. School-Symp. Spectr. Evolution Probl., Batiliman (Laspi), 2015 (in Russian)

[18] N. D. Kopachevskii, K. A. Radomirskaya, “Abstract mixed boundary-value and spectral conjugation problems and their applications”, Sovrem. mat. Fundam. napravl., 61, 2016, 67–102 (in Russian)

[19] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR

[20] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR

[21] A. S. Markus, V. I. Matsaev, “On the basis consisting of a subset of eigenvectors and adjoined vectors of a self-adjoint operator pencil”, Mat. sb., 133(175):3(7) (1987), 293–313 (in Russian) | MR | Zbl

[22] A. S. Markus, V. I. Matsaev, “Basis consisting of a subsystem of eigenvectors and adjoined vectors of a self-adjoint operator pencil”, Funkts. analiz i ego prilozh., 21:1 (1987), 82–82 (in Russian) | MR | Zbl

[23] S. G. Mikhlin, Direct Methods in Mathematical Physics, Gos. izd-vo tekh.-teor. lit., Moscow, 1950 (in Russian) | MR

[24] L. S. Pontryagin, “Hermit operators in a space with indefinite metrics”, Izv. AN SSSR. Ser. Mat., 8:6 (1944), 243–280 (in Russian) | MR | Zbl

[25] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Spectral theory of differential operators, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam., napravl., 64, 1989 (in Russian) | MR | Zbl

[26] P. A. Starkov, “Operator approach to conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 15(64):1 (2002), 58–62 (in Russian)

[27] P. A. Starkov, “On basic system of eigenelements in conjugation problems”, Tavr. vestn. inform. i mat., 1 (2003), 118–131 (in Russian) | Zbl

[28] P. A. Starkov, “Examples of multicomponent conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 18(57):1 (2005), 89–94 (in Russian)

[29] Agranovich M. S., Katsenelenbanm B. Z., Sivov A. N., Voitovich N. N., Generalized method of eigenoscillations in diffraction theory, Wiley-VCN, Berlin, 1999 | MR

[30] Gohberg I., Goldberg S., Basic operator theory, Birkhauser, Boston, 1980 | MR

[31] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkhauser, Basel–Boston–Berlin, 2001 | MR | Zbl

[32] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonselfadjoint problems for viscous fluid, Birkhauser, Basel–Boston–Berlin, 2003 | MR | Zbl

[33] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[34] Voytitsky V. I., Kopachevsky N. D., “On the modified spectral Stefan problem and its abstract generalizations”, Modern analysis and applications, The Mark Krein centenary conference, v. 2, Differential operators and mechanics, Birkhauser, Basel, 2009, 373–386 | MR