Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_2_a4, author = {N. D. Kopachevskii and A. R. Yakubova}, title = {On some problems generated by a~sesquilinear form}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {278--315}, publisher = {mathdoc}, volume = {63}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/} }
TY - JOUR AU - N. D. Kopachevskii AU - A. R. Yakubova TI - On some problems generated by a~sesquilinear form JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 278 EP - 315 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/ LA - ru ID - CMFD_2017_63_2_a4 ER -
N. D. Kopachevskii; A. R. Yakubova. On some problems generated by a~sesquilinear form. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 278-315. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/
[1] M. S. Agranovich, “Spectral problems for strongly elliptic second-order systems in domains with smooth and nonsmooth boundaries”, Usp. mat. nauk, 57:5 (2002), 3–78 (in Russian) | DOI | MR | Zbl
[2] M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Domains with Smooth and Lipschitz Boundaries, MTsMNO, Moscow, 2013 (in Russian)
[3] T. Ya. Azizov, N. D. Kopachevskii, Abstract Green Formula and Its Applications: Special Course, FLP “O. A. Bondarenko”, Simferopol', 2011 (in Russian)
[4] O. A. Andronova, N. D. Kopachevskii, “On linear problems with surface dissipation of energy”, Sovrem. mat. Fundam. napravl., 29, 2008, 11–28 (in Russian) | MR
[5] N. K. Askerov, S. G. Kreyn, G. I. Laptev, “A problem of oscillations of viscous fluid and related operator equations”, Funkts. analiz i ego prilozh., 2:2 (1968), 21–32 (in Russian) | MR | Zbl
[6] V. I. Voytitskiy, N. D. Kopachevskii, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Sovrem. mat. Fundam. napravl., 34, 2009, 5–44 (in Russian) | MR
[7] I. L. Vulis, M. Z. Solomyak, “Spectral asymptotics of the degenerating Steklov problem”, Vestn. LGU, 1973, no. 19, 148–150 (in Russian) | MR | Zbl
[8] V. I. Gorbachuk, “Dissipativnye granichnye zadachi dlya ellipticheskikh differentsial'nykh uravneniy”, Functional and numeric methods of mathematical physics, Digest Sci. Proc., Inst. Math. Mech., Kiev, 1998, 60–63 (in Russian)
[9] I. Ts. Gokhberg, M. G. Kreyn, Introduction to the Theory of Linear Nonself-adjoint Operators in a Hilbert Space, Nauka, Moscow, 1965 (in Russian) | MR
[10] N. D. Kopachevskii, “On the abstract Green formula for a triplet of Hilbert spaces and its applications to the Stokes problem”, Tavr. vestn. inform. i mat., 2004, no. 2, 52–80 (in Russian)
[11] N. D. Kopachevskii, “Abstract Green formula and the Stokes problem”, Izv. vuzov. Severo-Kavkazsk. reg. Estestv. nauki. Mat. i mekh. sploshn. sredy, 2004, 137–141 (in Russian)
[12] N. D. Kopachevskii, Operator Methods of Mathematical Physics: Special Course, OOO “FORMA”, Simferopol', 2008 (in Russian)
[13] N. D. Kopachevskii, Spectral Theory of Operator Pencils: Special Course, OOO “FORMA”, Simferopol', 2009 (in Russian)
[14] N. D. Kopachevskii, “On abstract Green formula for mixed boundary-value problems and its applications”, Spektr. i evolyuts. zadachi, 21:1 (2011), 2–39 (in Russian)
[15] N. D. Kopachevskii, Integrodifferential Volterra Equations in a Hilbert Space, Special Course, FLP “O. A. Bondarenko”, Simferopol', 2012 (in Russian)
[16] N. D. Kopachevskii, “Abstract Green formulas for triples of Hilbert spaces and sesquilinear forms”, Sovrem. mat. Fundam. napravl., 57, 2015, 71–107 (in Russian)
[17] N. D. Kopachevskii, Abstract Green Formula and Some Its Applications, OOO “FORMA”, Simferopol', 2016 (in Russian)
[18] N. D. Kopachevskii, S. G. Kreyn, “Abstract Green formulas for triples of Hilbert spaces, abstract boundary-value and spectral problems”, Ukr. mat. vestn., 1:1 (2004), 69–97 (in Russian) | MR | Zbl
[19] N. D. Kopachevskii, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR
[20] N. D. Kopachevskii, K. A. Radomirskaya, “Abstract mixed boundary-value and spectral conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. fiz.-mat. nauki, 27:1 (2014), 58–64 (in Russian)
[21] N. D. Kopachevskii, K. A. Radomirskaya, “Abstract mixed boundary-value and spectral conjugation problems and their applications”, Sovrem. mat. Fundam. napravl., 61, 2016, 67–102 (in Russian)
[22] N. D. Kopachevskii, A. R. Yakubova, “On boundary-value, spectral, and initial-boundary value problems generated by sesquilinear forms”, Proc. XXIV Int. Conf. “Mathematics. Economics. Education”, IX Int. Symp. “Fourier Series Appl.”, Int. Conf. Stoch. Methods, “Fond nauki i obrazovaniya”, Rostov-na-Donu, 2016, 57–63 (in Russian)
[23] N. D. Kopachevskii, A. R. Yakubova, “On some spectral and initial-boundary value problems generated by sesquilinear forms”, Abstr. Int. Conf. “XXVII Crimean Autumn Math. School-Symp. Spectr. Evolution Problems” (Batiliman (Laspi), Crimea, V. I. Vernadsky Crimean Federal Univ., 17–29 Sep. 2016), OOO “FORMA”, Simferopol', 2016, 84–85 (in Russian)
[24] S. G. Kreyn, “On oscillations of viscous fluid in a vessel”, Dokl. AN SSSR, 159:2 (1964), 262–265 (in Russian)
[25] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR
[26] S. G. Kreyn, G. I. Laptev, “To the problem of motion of a viscous fluid in an open vessel”, Funkts. analiz i ego prilozh., 1:2 (1968), 40–50 (in Russian) | MR | Zbl
[27] O. A. Ladyzhenskaya, Mathematical Questions of Dynamics of a Viscous Incompressible Fluid, Nauka, Moscow, 1970 (in Russian) | MR
[28] Zh.-L. Lions, E. Manzhenes, Nonhomogeneous Boundary-Value Problems and Their Applications, Mir, Moscow, 1971 (in Russian) | MR
[29] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR
[30] A. S. Markus, V. I. Matsaev, “Theorems on comparison of spectra of linear operators and spectral asymptotics”, Tr. Mosk. Mat. ob-va, 45, 1982, 133–181 (in Russian) | MR | Zbl
[31] A. S. Markus, V. I. Matsaev, “Theorems on comparison of spectra of linear operators and spectral asymptotics for the Keldysh pencils”, Mat. sb., 123(165):3 (1984), 391–406 (in Russian) | MR | Zbl
[32] S. G. Mikhlin, Problem of Minimum of Quadratic Functional, Gostekhizdat, Moscow–Leningrad, 1952 (in Russian) | MR
[33] S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, Moscow, 1970 (in Russian) | MR
[34] Zh.-P. Oben, Approximate Solution of Elliptic Boundary-Value Problems, Mir, Moscow, 1977 (in Russian) | MR
[35] P. A. Starkov, “Operator approach to conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 15:1 (2002), 58–62 (in Russian)
[36] P. A. Starkov, “Case of general position for the operator pencil arising in investigation of conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 15:2 (2002), 82–88 (in Russian)
[37] Agranovich M. S., “Remarks on potential and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl
[38] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized method of eigenoscillations in diffraction theory, Wiley-VCH, Berlin etc., 1999 | MR | Zbl
[39] Chueshov I., Eller M., Lasieska I., “Finite dimensionally of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Commun. Part. Differ. Equ., 29:11-12 (2004), 1847–1876 | DOI | MR | Zbl
[40] Chueshov I., Lasieska I., “Global attractors for von Karman evolutions with a nonlinear boundary dissipations”, J. Differ. Equ., 198 (2004), 196–231 | DOI | MR | Zbl
[41] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl
[42] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[43] Showalter R. E., “Hilbert space methods for partial differential equations”, Electron. J. Differ. Equ., 1994, Monographs, 01 http://ejde.math.unt.edu/Monographs/01/abstr.html | MR