On some problems generated by a~sesquilinear form
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 278-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the generalized Green formula for a sesquilinear nonsymmetric form for the Laplace operator, we consider spectral nonself-adjoint problems. Some of them are similar to classical problems while the other arise in problems of hydrodynamics, diffraction, and problems with surface dissipation of energy. Properties of solutions of such problems are considered. Also we study initial-boundary value problems generating considered spectral problems and prove theorems on correct solvability of such problems on any interval of time.
@article{CMFD_2017_63_2_a4,
     author = {N. D. Kopachevskii and A. R. Yakubova},
     title = {On some problems generated by a~sesquilinear form},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {278--315},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/}
}
TY  - JOUR
AU  - N. D. Kopachevskii
AU  - A. R. Yakubova
TI  - On some problems generated by a~sesquilinear form
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 278
EP  - 315
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/
LA  - ru
ID  - CMFD_2017_63_2_a4
ER  - 
%0 Journal Article
%A N. D. Kopachevskii
%A A. R. Yakubova
%T On some problems generated by a~sesquilinear form
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 278-315
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/
%G ru
%F CMFD_2017_63_2_a4
N. D. Kopachevskii; A. R. Yakubova. On some problems generated by a~sesquilinear form. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 278-315. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a4/

[1] M. S. Agranovich, “Spectral problems for strongly elliptic second-order systems in domains with smooth and nonsmooth boundaries”, Usp. mat. nauk, 57:5 (2002), 3–78 (in Russian) | DOI | MR | Zbl

[2] M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Domains with Smooth and Lipschitz Boundaries, MTsMNO, Moscow, 2013 (in Russian)

[3] T. Ya. Azizov, N. D. Kopachevskii, Abstract Green Formula and Its Applications: Special Course, FLP “O. A. Bondarenko”, Simferopol', 2011 (in Russian)

[4] O. A. Andronova, N. D. Kopachevskii, “On linear problems with surface dissipation of energy”, Sovrem. mat. Fundam. napravl., 29, 2008, 11–28 (in Russian) | MR

[5] N. K. Askerov, S. G. Kreyn, G. I. Laptev, “A problem of oscillations of viscous fluid and related operator equations”, Funkts. analiz i ego prilozh., 2:2 (1968), 21–32 (in Russian) | MR | Zbl

[6] V. I. Voytitskiy, N. D. Kopachevskii, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Sovrem. mat. Fundam. napravl., 34, 2009, 5–44 (in Russian) | MR

[7] I. L. Vulis, M. Z. Solomyak, “Spectral asymptotics of the degenerating Steklov problem”, Vestn. LGU, 1973, no. 19, 148–150 (in Russian) | MR | Zbl

[8] V. I. Gorbachuk, “Dissipativnye granichnye zadachi dlya ellipticheskikh differentsial'nykh uravneniy”, Functional and numeric methods of mathematical physics, Digest Sci. Proc., Inst. Math. Mech., Kiev, 1998, 60–63 (in Russian)

[9] I. Ts. Gokhberg, M. G. Kreyn, Introduction to the Theory of Linear Nonself-adjoint Operators in a Hilbert Space, Nauka, Moscow, 1965 (in Russian) | MR

[10] N. D. Kopachevskii, “On the abstract Green formula for a triplet of Hilbert spaces and its applications to the Stokes problem”, Tavr. vestn. inform. i mat., 2004, no. 2, 52–80 (in Russian)

[11] N. D. Kopachevskii, “Abstract Green formula and the Stokes problem”, Izv. vuzov. Severo-Kavkazsk. reg. Estestv. nauki. Mat. i mekh. sploshn. sredy, 2004, 137–141 (in Russian)

[12] N. D. Kopachevskii, Operator Methods of Mathematical Physics: Special Course, OOO “FORMA”, Simferopol', 2008 (in Russian)

[13] N. D. Kopachevskii, Spectral Theory of Operator Pencils: Special Course, OOO “FORMA”, Simferopol', 2009 (in Russian)

[14] N. D. Kopachevskii, “On abstract Green formula for mixed boundary-value problems and its applications”, Spektr. i evolyuts. zadachi, 21:1 (2011), 2–39 (in Russian)

[15] N. D. Kopachevskii, Integrodifferential Volterra Equations in a Hilbert Space, Special Course, FLP “O. A. Bondarenko”, Simferopol', 2012 (in Russian)

[16] N. D. Kopachevskii, “Abstract Green formulas for triples of Hilbert spaces and sesquilinear forms”, Sovrem. mat. Fundam. napravl., 57, 2015, 71–107 (in Russian)

[17] N. D. Kopachevskii, Abstract Green Formula and Some Its Applications, OOO “FORMA”, Simferopol', 2016 (in Russian)

[18] N. D. Kopachevskii, S. G. Kreyn, “Abstract Green formulas for triples of Hilbert spaces, abstract boundary-value and spectral problems”, Ukr. mat. vestn., 1:1 (2004), 69–97 (in Russian) | MR | Zbl

[19] N. D. Kopachevskii, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR

[20] N. D. Kopachevskii, K. A. Radomirskaya, “Abstract mixed boundary-value and spectral conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. fiz.-mat. nauki, 27:1 (2014), 58–64 (in Russian)

[21] N. D. Kopachevskii, K. A. Radomirskaya, “Abstract mixed boundary-value and spectral conjugation problems and their applications”, Sovrem. mat. Fundam. napravl., 61, 2016, 67–102 (in Russian)

[22] N. D. Kopachevskii, A. R. Yakubova, “On boundary-value, spectral, and initial-boundary value problems generated by sesquilinear forms”, Proc. XXIV Int. Conf. “Mathematics. Economics. Education”, IX Int. Symp. “Fourier Series Appl.”, Int. Conf. Stoch. Methods, “Fond nauki i obrazovaniya”, Rostov-na-Donu, 2016, 57–63 (in Russian)

[23] N. D. Kopachevskii, A. R. Yakubova, “On some spectral and initial-boundary value problems generated by sesquilinear forms”, Abstr. Int. Conf. “XXVII Crimean Autumn Math. School-Symp. Spectr. Evolution Problems” (Batiliman (Laspi), Crimea, V. I. Vernadsky Crimean Federal Univ., 17–29 Sep. 2016), OOO “FORMA”, Simferopol', 2016, 84–85 (in Russian)

[24] S. G. Kreyn, “On oscillations of viscous fluid in a vessel”, Dokl. AN SSSR, 159:2 (1964), 262–265 (in Russian)

[25] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR

[26] S. G. Kreyn, G. I. Laptev, “To the problem of motion of a viscous fluid in an open vessel”, Funkts. analiz i ego prilozh., 1:2 (1968), 40–50 (in Russian) | MR | Zbl

[27] O. A. Ladyzhenskaya, Mathematical Questions of Dynamics of a Viscous Incompressible Fluid, Nauka, Moscow, 1970 (in Russian) | MR

[28] Zh.-L. Lions, E. Manzhenes, Nonhomogeneous Boundary-Value Problems and Their Applications, Mir, Moscow, 1971 (in Russian) | MR

[29] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR

[30] A. S. Markus, V. I. Matsaev, “Theorems on comparison of spectra of linear operators and spectral asymptotics”, Tr. Mosk. Mat. ob-va, 45, 1982, 133–181 (in Russian) | MR | Zbl

[31] A. S. Markus, V. I. Matsaev, “Theorems on comparison of spectra of linear operators and spectral asymptotics for the Keldysh pencils”, Mat. sb., 123(165):3 (1984), 391–406 (in Russian) | MR | Zbl

[32] S. G. Mikhlin, Problem of Minimum of Quadratic Functional, Gostekhizdat, Moscow–Leningrad, 1952 (in Russian) | MR

[33] S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, Moscow, 1970 (in Russian) | MR

[34] Zh.-P. Oben, Approximate Solution of Elliptic Boundary-Value Problems, Mir, Moscow, 1977 (in Russian) | MR

[35] P. A. Starkov, “Operator approach to conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 15:1 (2002), 58–62 (in Russian)

[36] P. A. Starkov, “Case of general position for the operator pencil arising in investigation of conjugation problems”, Uch. zap. Tavr. nats. un-ta im. V. I. Vernadskogo. Ser. Mat. Mekh. Inform. Kibern., 15:2 (2002), 82–88 (in Russian)

[37] Agranovich M. S., “Remarks on potential and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl

[38] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized method of eigenoscillations in diffraction theory, Wiley-VCH, Berlin etc., 1999 | MR | Zbl

[39] Chueshov I., Eller M., Lasieska I., “Finite dimensionally of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Commun. Part. Differ. Equ., 29:11-12 (2004), 1847–1876 | DOI | MR | Zbl

[40] Chueshov I., Lasieska I., “Global attractors for von Karman evolutions with a nonlinear boundary dissipations”, J. Differ. Equ., 198 (2004), 196–231 | DOI | MR | Zbl

[41] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl

[42] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[43] Showalter R. E., “Hilbert space methods for partial differential equations”, Electron. J. Differ. Equ., 1994, Monographs, 01 http://ejde.math.unt.edu/Monographs/01/abstr.html | MR