Model of the Maxwell compressible fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 247-265

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of viscoelastic barotropic Maxwell fluid is investigated. The unique solvability theorem is proved for the corresponding initial-boundary value problem. The associated spectral problem is studied. We prove statements on localization of the spectrum, on the essential and discrete spectra, and on asymptotics of the spectrum.
@article{CMFD_2017_63_2_a2,
     author = {D. A. Zakora},
     title = {Model of the {Maxwell} compressible fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {247--265},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Model of the Maxwell compressible fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 247
EP  - 265
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/
LA  - ru
ID  - CMFD_2017_63_2_a2
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Model of the Maxwell compressible fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 247-265
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/
%G ru
%F CMFD_2017_63_2_a2
D. A. Zakora. Model of the Maxwell compressible fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 247-265. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/