Model of the Maxwell compressible fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 247-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of viscoelastic barotropic Maxwell fluid is investigated. The unique solvability theorem is proved for the corresponding initial-boundary value problem. The associated spectral problem is studied. We prove statements on localization of the spectrum, on the essential and discrete spectra, and on asymptotics of the spectrum.
@article{CMFD_2017_63_2_a2,
     author = {D. A. Zakora},
     title = {Model of the {Maxwell} compressible fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {247--265},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Model of the Maxwell compressible fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 247
EP  - 265
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/
LA  - ru
ID  - CMFD_2017_63_2_a2
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Model of the Maxwell compressible fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 247-265
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/
%G ru
%F CMFD_2017_63_2_a2
D. A. Zakora. Model of the Maxwell compressible fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 247-265. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a2/

[1] V. A. Avakian, “Asymptotic distribution of the spectrum of a linear pencil perturbed with analytic operator-function”, Funkts. analiz i ego prilozh., 12:2 (1978), 66–67 (in Russian) | MR | Zbl

[2] T. Ya. Azizov, I. S. Iokhvidov, Essentials of Theory of Linear Operators in Spaces with Indefinite Metrics, Nauka, Moscow, 1986 (in Russian) | MR

[3] T. Ya. Azizov, N. D. Kopachevskii, L. D. Orlova, “Evolution and spectral problems generated by the problem of small motions of viscoelastic fluid”, Tr. SPb. Mat. ob-va, 6, 1998, 5–33 (in Russian)

[4] M. Sh. Birman, M. Z. Solomiak, “Asymptotics of the spectrum of differential equations”, Itogi nauki i tekhn. Ser. mat. analiz, 14, 1977, 5–58 (in Russian) | MR | Zbl

[5] V. V. Vlasov, N. A. Rautian, “Spectral analysis of hyperbolic Volterra integrodifferential equations”, Dokl. RAN, 464:6 (2015), 656–660 (in Russian) | DOI

[6] D. A. Zakora, “Model of the Oldroyd compressible fluid”, Sovrem. mat. Fundam. napravl., 61, 2016, 41–66 (in Russian) | MR

[7] V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, Sovrem. mat. Fundam. napravl., 31, 2009, 3–144 (in Russian) | MR

[8] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972, (Russian translation) | MR

[9] N. D. Kopachevskii, S. G. Kreyn, Ngo Zuy Kan, “Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems”, Nauka, Moscow, 1989 (in Russian) | MR

[10] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR

[11] A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR

[12] A. I. Markushevich, Theory of Analytic Functions, v. 1, Nauka, Moscow, 1967 (in Russian) | MR

[13] A. I. Miloslavskii, “Spectrum of small oscillations of viscoelastic medium with memory”, Dokl. AN SSSR, 309:3 (1989), 532–536 (in Russian) | MR

[14] S. G. Mikhlin, “Spectrum of an operator pencil of the elasticity theory”, Usp. mat. nauk, 28:3 (1973), 43–82 (in Russian) | MR | Zbl

[15] M. B. Orazov, Some questions of the spectral theory of nonself-adjoint operators and related problems of mechanics, Doctoral thesis, 01.01.02, Ashkhabad, 1982

[16] A. P. Oskolkov, “Inital-boundary value problems for the equations of motion of the Kelvin–Voight and Oldroid fluids”, Tr. MIAN, 179, 1987, 126–164 (in Russian) | MR | Zbl

[17] G. V. Radzievskii, Quadratic Pencil of Operators, Preprint, Kiev, 1976 (in Russian) | MR

[18] K. Rektoris, Variational Methods in Mathematical Physics and Technics, Mir, Moscow, 1985 (in Russian) | MR

[19] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, v. 1, Birkhäuser, Basel–Boston–Berlin, 1990 | Zbl

[20] Grubb G., Geymonat G., “The essential spectrum of elliptic systems of mixed order”, Math. Ann., 227 (1977), 247–276 | DOI | MR | Zbl

[21] Kelvin (Thomson) W., “On the theory of viscoelastic fluids”, Math. A Phys. Pap., 3 (1875), 27–84

[22] Maxwell J. C., “On the dynamical theory of gases”, Philos. Trans. R. Soc. London, 157 (1867), 49–88 | DOI

[23] Maxwell J. C., “On the dynamical theory of gases”, Philos. Mag. London, 35 (1868), 129–145

[24] Oldroyd J. G., “On the formulation of rheological equations of state”, Proc. Roy. Soc. London A, 200 (1950), 523–541 | DOI | MR | Zbl

[25] Oldroyd J. G., “The elastic and viscous properties of emulsions and suspensions”, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 218 (1953), 122–137 | DOI

[26] Rautian N. A., Vlasov V. V., “Well-posedness and spectral analysis of hyperbolic Volterra equations of convolution type”, Differential and difference equations with applications, ICDDEA 2015 (Amadora, Portugal, May 18–22, 2015), Selected contributions, Springer, Cham, 2016, 411–419 | DOI | MR | Zbl

[27] Voight W., “Uber die innere Reibung der festen Körper, inslesondere der Krystalle”, Gottinden Abh., 36:1 (1889), 3–47

[28] Voight W., “Uber innex Reibung fester Körper, insbesondere der Metalle”, Ann. Phys. U. Chem., 47:9 (1892), 671–693 | DOI