Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_2_a1, author = {V. V. Zhikov and S. E. Pastukhova}, title = {Large time asymptotics of fundamental solution for the diffusion equation in periodic medium and its application to estimates in the theory of averaging}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {223--246}, publisher = {mathdoc}, volume = {63}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a1/} }
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - Large time asymptotics of fundamental solution for the diffusion equation in periodic medium and its application to estimates in the theory of averaging JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 223 EP - 246 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a1/ LA - ru ID - CMFD_2017_63_2_a1 ER -
%0 Journal Article %A V. V. Zhikov %A S. E. Pastukhova %T Large time asymptotics of fundamental solution for the diffusion equation in periodic medium and its application to estimates in the theory of averaging %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 223-246 %V 63 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a1/ %G ru %F CMFD_2017_63_2_a1
V. V. Zhikov; S. E. Pastukhova. Large time asymptotics of fundamental solution for the diffusion equation in periodic medium and its application to estimates in the theory of averaging. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 223-246. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a1/
[1] I. A. Aleksandrova, “Spectral method in asymptotic problems of diffusion with drift”, Mat. zametki, 59:5 (1996), 768–770 (in Russian) | DOI | MR | Zbl
[2] A. Iu. Beliaev, “Waves of compression in a fluid with air bubbles”, Prikl. mat. mekh., 52:3 (1988), 444–449 (in Russian) | Zbl
[3] A. Iu. Beliaev, Averaging in Problems of the Filtration Theory, Nauka, Moscow, 2004 (in Russian)
[4] M. S. Birman, T. A. Suslina, “Periodic differential operators of second order. Threshold properties and averaging”, Algebra i analiz, 15:5 (2003), 1–108 (in Russian) | MR | Zbl
[5] E. S. Vasilevskaia, “Averaging of parabolic Cauchy problem with periodic coefficients using a corrector”, Algebra i analiz, 21:1 (2008), 3–60 (in Russian) | MR | Zbl
[6] E. S. Vasilevskaia, T. A. Suslina, “Threshold approximations of a factorized self-adjoint operator family using the first and the second correctors”, Algebra i analiz, 23:2 (2011), 102–146 (in Russian) | MR | Zbl
[7] V. V. Zhikov, “Asymptotic behavior and stabilization of solutions of a second-order parabolic equation with lower-order terms”, Tr. Mosk. Mat. ob-va, 46, 1983, 69–98 (in Russian) | MR | Zbl
[8] V. V. Zhikov, “Spectral approach to asymptotic diffusion problems”, Diff. uravn., 25:1 (1989), 44–50 (in Russian) | MR | Zbl
[9] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Averaging of Differential Operators, Nauka, Moscow, 1993 (in Russian) | MR
[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates in the theory of averaging”, Usp. mat. nauk, 71:3 (2016), 27–122 (in Russian) | DOI | MR | Zbl
[11] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972, (Russian translation) | MR
[12] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Mir, Moscow, 1983, (Russian translation) | MR
[13] V. B. Korotkov, Integral Operators, Nauka, Novosibirsk, 1983 (in Russian) | MR
[14] O. A. Ladyzhenskaia, N. N. Uraltseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1973 (in Russian) | MR
[15] S. E. Pastukhova, “Approximations of operator exponential in a periodic diffusion problem with a drift”, Mat. sb., 204:2 (2013), 133–160 (in Russian) | DOI | MR | Zbl
[16] E. V. Sevostianova, “Asymptotic expansion of solution of a second-order elliptic equation with periodic fast oscillating coefficients”, Mat. sb., 115(157):2 (1981), 204–222 (in Russian) | MR | Zbl
[17] T. A. Suslina, “On averaging of periodic parabolic systems”, Funkts. analiz i ego prilozh., 38:4 (2004), 86–90 (in Russian) | DOI | MR | Zbl
[18] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, Mir, Moscow, 1967, (Russian translation) | MR
[19] Bensousan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978 | MR
[20] Ortega J. H., Zuazua E., “Large time behavior in $\mathbb R^d$ for linear parabolic equations with periodic coefficients”, Asymptot. Anal., 22:1 (2000), 51–85 | MR | Zbl
[21] Pastukhova S. E., “Approximations of the exponential of an operator with periodic coefficients”, J. Math. Sci. (N.Y.), 181:5 (2012), 668–700 | DOI | MR | Zbl
[22] Pastukhova S. E., Tikhomirov R. N., “Error estimates of homogenization in the Neumann boundary problem for an elliptic equation with multiscale coefficients”, J. Math. Sci. (N.Y.), 216:2 (2016), 325–344 | DOI | MR | Zbl
[23] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl
[24] Zhikov V. V., Pastukhova S. E., “Bloch principle for elliptic differential operators with periodic coefficients”, Russ. J. Math. Phys., 23:2 (2016), 257–277 | DOI | MR | Zbl