Singular integral operators and elliptic boundary-value problems.~I
Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 63 (2017) no. 1, pp. 1-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The book consists of three Parts I–III and Part I is presented here. In this book, we develop a new approach mainly based on the author's papers. Many results are published here for the first time. Chapter 1 is introductory. The necessary background from functional analysis is given there for completeness. In this book, we mostly use weighted Hölder spaces, and they are considered in Ch. 2. Chapter 3 plays the main role: in weighted Hölder spaces we consider there estimates of integral operators with homogeneous difference kernels, which cover potential-type integrals and singular integrals as well as Cauchy-type integrals and double layer potentials. In Ch. 4, analogous estimates are established in weighted Lebesgue spaces. Integrals with homogeneous difference kernels will play an important role in Part III of the monograph, which will be devoted to elliptic boundary-value problems. They naturally arise in integral representations of solutions of first-order elliptic systems in terms of fundamental matrices or their parametrixes. Investigation of boundary-value problems for second-order and higher-order elliptic equations or systems is reduced to first-order elliptic systems.
@article{CMFD_2017_63_1_a0,
     author = {A. P. Soldatov},
     title = {Singular integral operators and elliptic boundary-value {problems.~I}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {1--189},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_1_a0/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - Singular integral operators and elliptic boundary-value problems.~I
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 1
EP  - 189
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_1_a0/
LA  - ru
ID  - CMFD_2017_63_1_a0
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T Singular integral operators and elliptic boundary-value problems.~I
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 1-189
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_1_a0/
%G ru
%F CMFD_2017_63_1_a0
A. P. Soldatov. Singular integral operators and elliptic boundary-value problems.~I. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 63 (2017) no. 1, pp. 1-189. http://geodesic.mathdoc.fr/item/CMFD_2017_63_1_a0/

[1] D. S. Anikonov, “On boundedness of a singular integral operator in the space $C^\alpha(\overline G)$”, Math. Digest, 104:4 (1977), 516–534 (in Russian)

[2] A. Erdélyi, etc., Tables of Integral Transforms, v. I, McGraw-Hill Book Co., N.Y., 1954

[3] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin—Heidelberg—New York, 1976 | MR | Zbl

[4] L. Bers, F. John, M. Schechter, Partial Differential Equations, Interscience Publishers, New York–London–Sydney, 1964 | MR | Zbl

[5] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integral Representation of Functions and Embedding Theorems, Nauka, M., 1975 (in Russian)

[6] A. V. Bitsadze, “Spatial analog of the Cauchy-type integral and some its applications”, Rep. Acad. Sci. USSR, 93:3 (1953), 389–392 (in Russian) | Zbl

[7] N. P. Vekua, Systems of Singular Integral Equations, Nauka, M., 1970 (in Russian)

[8] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Commutative Normed Rings, Fizmatgiz, M., 1960 (in Russian)

[9] T. Gamelin, Uniform Algebras, Mir, M., 1973 (in Russian)

[10] F. R. Gantmacher, The Theory of Matrices, Nauka, M., 1988 (in Russian)

[11] F. D. Gakhov, Boundary-Value Problems, Nauka, M., 1977 (in Russian)

[12] G. M. Goluzin, Geometric Theory of Functions of Complex Variable, Nauka, M., 1972 (in Russian)

[13] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962 | MR | Zbl

[14] I. Ts. Gokhberg, N. I. Krupnik, Introduction to the Theory of One-Dimensional Singular Equations, Shtiintsa, Kishinev, 1973 (in Russian)

[15] I. Ts. Gokhberg, I. A. Feldman, Convolutions Equations and Projection Methods of Their Solution, Nauka, M., 1970 (in Russian)

[16] V. P. Glushko, “On operators of potential type and certain embedding theorems”, Rep. Acad. Sci. USSR, 126:3 (1959), 467–470 (in Russian) | Zbl

[17] R. V. Duduchava, “On singular integral operators in weighted spaces of Hölder functions”, Rep. Acad. Sci. USSR, 191:1 (1970), 16–19 (in Russian) | Zbl

[18] R. V. Duduchava, “On the Noether theorems for singular integral equations in weighted spaces of Hölder functions”, Proc. Symp. on Contin. Mech. and Related Probl. of Anal. (Tbilisi, 1971), v. 1, Metsniereba, Tbilisi, 1973, 89–102 (in Russian)

[19] R. V. Duduchava, “Integral convolution equations with discontinuous presymbols, singular integral equations with fixed singularities, and their applications to problems of mechanics”, Proc. Tbilisi Math. Inst. Acad. Sci. Georgia SSR, 60, 1979, 1–135 (in Russian)

[20] E. M. Dynkin, “Methods of the theory of singular integrals. I. Hilbert transformation and the Calderon–Zygmund theory”, Totals of Science and Technics, 15, VINITI, M., 1987, 197–292 (in Russian)

[21] E. M. Dynkin, “Methods of the theory of singular integrals. II. The Littlewood–Paley theory and its applications”, Totals of Science and Technics, 42, VINITI, M., 1989, 105–198 (in Russian)

[22] K. Yosida, Functional Analysis, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965 | MR | Zbl

[23] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | Zbl

[24] M. A. Krasnosel'skii, etc., Integral Operators in the Space of Summable Functions, Nauka, M., 1966 (in Russian)

[25] S. G. Krein, Linear Equations in Banach Space, Nauka, M., 1971 (in Russian)

[26] S. G. Krein, Iu. I. Petunin, E. M. Semenov, Interpolation of Linear Operators, Nauka, M., 1978 (in Russian)

[27] H. B. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Space, Nauchnaia kniga, Novosibirsk, 1998 (in Russian)

[28] O. A. Ladyzhenskaia, N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Nauka, M., 1964 (in Russian)

[29] B. M. Levitan, Almost Periodic Functions, Gostekhizdat, M., 1953 (in Russian)

[30] S. Lang, Introduction to Differentiable Manifolds, Interscience Publishers, New York–London, 1962 | MR | Zbl

[31] G. S. Litvinchuk, Boundary-Value Problems and Singular Integral Equations with Shift, Nauka, M., 1977 (in Russian)

[32] V. G. Maz'ya, Sobolev Spaces, LGU, L., 1985 (in Russian)

[33] N. I. Maltsev, Essentials of Linear Algebra, 3d ed., Nauka, M., 1970 (in Russian)

[34] S. G. Mikhlin, “Singular integral equations”, Progr. Math. Sci., 3:3 (1948), 29–112 (in Russian)

[35] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Fizmatgiz, M., 1962 (in Russian)

[36] N. I. Muskhelishvili, Singular Integral Equations, Nauka, M., 1968 (in Russian)

[37] R. Narasimkhan, Analysis on Real and Complex Manifolds, Mir, M., 1971 (in Russian)

[38] S. M. Nikolskii, Approximation of Multivariable Functions and Embedding Theorems, Nauka, M., 1969 (in Russian)

[39] R. S. Palais, Seminar on the Atiyah–Singer Index Theorem, Mir, M., 1970 (in Russian)

[40] A. Iu. Pirkovskii, Spectral Theory and Functional Calculi for Linear Operators, MTsNMO, M., 2010 (in Russian)

[41] V. A. Polunin, A. P. Soldatov, “Three-dimensional analog of the Cauchy-type integral”, Differ. Equ., 47:3 (2011), 366–375 (in Russian)

[42] S. Prössdorf, Some Classes of Singular Equations, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1978 | MR | Zbl

[43] I. I. Privalov, “The Cauchy integral”, Bull. Phys.-Math. Fac. Saratov Univ., 11:1 (1918), 94–105 (in Russian)

[44] I. I. Privalov, Boundary Properties of Analytic Functions, 2nd ed., Nauka, M., 1967 (in Russian)

[45] F. Riesz, B. Szokefalvi-Nagy, Functional Analysis, Blackie Son, London–Glasgow, 1956 | MR | Zbl

[46] U. Rudin, Functional Analysis, Mir, M., 1991 (in Russian)

[47] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, 3d ed., Nauka, M., 1988 (in Russian)

[48] A. P. Soldatov, “To Noether theory of operators. Wiener embeddings of $B$-algebras”, Differ. Equ., 14:1 (1978), 104–115 (in Russian) | Zbl

[49] A. P. Soldatov, “Category of duality in the theory of Noether operators”, Differ. Equ., 15:2 (1979), 303–309 (in Russian) | Zbl

[50] A. P. Soldatov, “Asymptotics of solutions of singular integral equations”, Differ. Equ., 22:1 (1986), 143–153 (in Russian) | Zbl

[51] A. P. Soldatov, “Asymptotics of solutions of boundary-value problems for elliptic systems near angular points”, Rep. Acad. Sci. USSR, 315:1 (1990), 34–36 (in Russian) | Zbl

[52] A. P. Soldatov, “Boundary properties of the Cauchy-type integrals”, Differ. Equ., 26:1 (1990), 131–136 (in Russian)

[53] A. P. Soldatov, “Generalized Cauchy-type integral”, Differ. Equ., 27:2 (1991), 3–8 (in Russian)

[54] A. P. Soldatov, One-Dimensional Singular Operators and Boundary-Value Problems of the Function Theory, Vysshaia shkola, M., 1991 (in Russian)

[55] A. P. Soldatov, “Generalized Cauchy-type integral and singular integral in weighted Hölder space”, Rep. Acad. Sci. USSR, 330 (1993), 164–166 (in Russian) | Zbl

[56] A. P. Soldatov, “Algebra of singular operators with end symbol on a piecewise-smooth curve. I. Convolution-type operators on semiaxis”, Differ. Equ., 36:9 (2000), 1209–1219 (in Russian) | Zbl

[57] A. P. Soldatov, “Algebra of singular operators with end symbol on a piecewise-smooth curve. II. Main constructions”, Differ. Equ., 37:6 (2001), 825–838 (in Russian) | Zbl

[58] A. P. Soldatov, “Algebra of singular operators with end symbol on a piecewise-smooth curve. III. Normal type operators”, Differ. Equ., 37:10 (2001), 1364–1376 (in Russian) | Zbl

[59] A. P. Soldatov, “Boundary properties of generalized Cauchy-type integrals with summable density”, Rep. Adyg (Circassian) Int. Acad. Sci., 10:1 (2008), 62–66 (in Russian)

[60] A. P. Soldatov, A. V. Aleksandrov, “Boundary properties of the Cauchy-type integrals. $L_p$-case”, Differ. Equ., 27:1 (1991), 3–8 (in Russian)

[61] T. A. Soldatova, “Generalized double layer potentials”, Bull. Moscow Univ. Ser. 1. Math. Mech., 2009, no. 6, 8–17 (in Russian)

[62] T. A. Soldatova, “Boundary properties of generalized Cauchy-type integrals in spaces of smooth functions”, Bull. Saratov Univ. New Ser. Ser. Math. Mech. Inform., 11:3(1) (2011), 95–109 (in Russian)

[63] J. Sochocki, On Definite Integrals and Functions Used for Series Expansion, Saint-Petersburg, 1873 (in Russian)

[64] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970 | MR | Zbl

[65] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971 | MR | Zbl

[66] M. E. Taylor, Pseudodifferential operators, Princeton University Press, Princeton, 1981 | MR | Zbl

[67] B. V. Khvedelidze, “Linear discontinuous problems of the theory of functions, singular integral equations, and some their applications”, Proc. Tbilisi Math. Inst. Acad. Sci. Georgia SSR, 23 (1956), 3–158 (in Russian)

[68] L. Hörmander, “Estimates for translation invariant operators in $L_p$ spaces”, Acta Math., 104 (1960), 93–140 | DOI | MR | Zbl

[69] L. Hörmander, The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl

[70] Calderon A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Natl. Acad. Sci. USA, 74:4 (1977), 1324–1327 | DOI | MR | Zbl

[71] Christ M., Lectures on singular integral operators, Am. Math. Soc., Providence, 1990 | MR | Zbl

[72] Duduchava R. V., “On singular integral operators on piecewise smooth lines”, Function theoretic methods in differential equations, Pitman, London–San Francisco–Melbourne, 1976, 109–131 | MR

[73] Fichera G., “Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anisotropic inhomogeneous elasticity”, Proc. Int. Conf. «Part. Differ. Equ. Contin. Mech.» (Madison, Wisconsin, 1960), 1961, 55–80 | MR | Zbl

[74] Fichera G., Ricci P. E., “The single layer potential approach in the theory of boundary value problems for elliptic equations”, Lecture Notes in Math., 561, Springer, Berlin–N.Y., 1976, 39–50 | DOI | MR

[75] Giraud G., “Équations à intégrales principales; étude suivie d'une application”, Ann. Sci. Éc. Norm. Supér (3), 51 (1934), 251–372 | DOI | MR

[76] Kufner A., Weighted Sobolev spaces, Teubner Texte zur Mathematik, Leipzig, 1980 | MR

[77] Mikhlin S. G., Prosdorf S., Singular integral operators, Academic-Verlag, Berlin, 1986 | MR

[78] Plemelj J., “Ein Ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend”, Mon. Math. Phys., 19 (1908), 205–210 | DOI | MR | Zbl

[79] Tricomi F., “Formula d'inversione dell'ordine di due integrazioni doppie «con asterisco»”, Rend. Accad. d. L. Roma (6), 3 (1926), 535–539 | Zbl