Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_62_a7, author = {V. A. Popov}, title = {Traces of generalized solutions of elliptic differential-difference equations with degeneration}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {124--139}, publisher = {mathdoc}, volume = {62}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a7/} }
TY - JOUR AU - V. A. Popov TI - Traces of generalized solutions of elliptic differential-difference equations with degeneration JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 124 EP - 139 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a7/ LA - ru ID - CMFD_2016_62_a7 ER -
V. A. Popov. Traces of generalized solutions of elliptic differential-difference equations with degeneration. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 124-139. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a7/
[1] A. V. Bitsadze, A. A. Samarskiy, “On some simplest generalizations of linear elliptic boundary-value problems”, Rep. Acad. Sci. USSR, 185:4 (1969), 739–740 | Zbl
[2] M. I. Vishik, “Boundary-value problems for elliptic equations degenerating on the boundary of domain”, Math. Digest, 35(77):3 (1954), 513–568 | MR | Zbl
[3] N. Dunford, J. Schwartz, Linear Operators, v. II, Spectral Theory. Self-Adjoint Operators in Hilbert Space, Mir, Moscow, 1966
[4] E. P. Ivanova, “Continuous dependence of solutions of boundary-value problems for differential-difference equations on shifts of the argument”, Contemp. Math. Fundam. Directions, 59, 2016, 74–96
[5] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972
[6] M. V. Keldysh, “On some cases of degeneration of elliptic-type equations on the boundary of domain”, Rep. Acad. Sci. USSR, 77 (1951), 181–183
[7] S. G. Kreyn, Linear Equations in Banach Space, Nauka, Moscow, 1971
[8] J. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Mir, Moscow, 1971
[9] V. P. Mikhaylov, Partial Differential Equations, Nauka, Moscow, 1976
[10] A. B. Muravnik, “Asymptotic properties of solutions of the Dirichlet problem in a half-plane for some differential-difference elliptic equations”, Math. Notes, 100:4 (2016), 566–576 | DOI | MR | Zbl
[11] O. A. Oleynik, E. V. Radkevich, Second-Order Equations with Nonnegative Characteristic Form, VINITI, Moscow, 1971
[12] V. A. Popov, A. L. Skubachevskii, “A priori estimates for elliptic differential-difference operators with degeneration”, Contemp. Math. Fundam. Directions, 36, 2010, 125–142 | MR | Zbl
[13] V. A. Popov, A. L. Skubachevskii, “Smoothness of generalized solutions of elliptic differential-difference equations with degenerations”, Contemp. Math. Fundam. Directions, 39, 2011, 130–140 | MR
[14] L. E. Rossovskii, “Coercivity of functional differential equations”, Math. Notes, 59:1 (1996), 103–113 | DOI | MR | Zbl
[15] L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, Contemp. Math. Fundam. Directions, 36, 2014, 125–142 | MR
[16] A. L. Skubachevskii, “Elliptic functional differential equations with degeneration”, Proc. Moscow Math. Soc., 59, 1997, 240–285
[17] A. L. Skubachevskii, “Boundary-value problems for elliptic functional differential equations and their applications”, Progr. Math. Sci., 71:5 (2016), 3–112 | DOI | MR
[18] A. L. Tasevich, “Smoothness of generalized solutions of the Dirichlet problem for strong elliptic functional-differential equations with orthotropic contractions”, Contemp. Math. Fundam. Directions, 58, 2015, 153–165 | MR
[19] G. Fikera, “On a unified theory of boundary-value problems for elliptic-parabolic equations of second order”, Mathematics, 7:6 (1963), 99–121
[20] Popov V. A., Skubachevskii A. L., “On smoothness of solutions of some elliptic functional-differential equations with degenerations”, Russ. J. Math. Phys., 20:4 (2013), 492–507 | DOI | MR | Zbl
[21] Skubachevskii A. L., “The first boundary-value problem for strongly elliptic differential-difference equations”, J. Differ. Equ., 63:3 (1986), 332–361 | DOI | MR
[22] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl