Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_62_a6, author = {A. V. Ivanyukhin}, title = {Domain of existence of solutions in the optimal control problem for a~spacecraft with limited thrust}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {100--123}, publisher = {mathdoc}, volume = {62}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a6/} }
TY - JOUR AU - A. V. Ivanyukhin TI - Domain of existence of solutions in the optimal control problem for a~spacecraft with limited thrust JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 100 EP - 123 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a6/ LA - ru ID - CMFD_2016_62_a6 ER -
%0 Journal Article %A A. V. Ivanyukhin %T Domain of existence of solutions in the optimal control problem for a~spacecraft with limited thrust %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 100-123 %V 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a6/ %G ru %F CMFD_2016_62_a6
A. V. Ivanyukhin. Domain of existence of solutions in the optimal control problem for a~spacecraft with limited thrust. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 100-123. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a6/
[1] R. Bettin, Guidance in Space, Mashinostroenie, Moscow, 1966
[2] R. Gabasov, F. M. Kirillova, “Methods of optimal control”, Totals Sci. Tech. Contemp. Probl. Math., 6, 1976, 133–259 | MR | Zbl
[3] M. K. Gavurin, “Nonlinear functional equations and continuous analogs of iterative methods”, Bull. Higher Edu. Inst. Ser. Math., 1958, no. 5, 18–31 | MR | Zbl
[4] E. M. Galeev, M. I. Zelikin, S. V. Konyagin, G. G. Magaril-Il'yaev, N. P. Osmolovskiy, V. Yu. Protasov, V. M. Tikhomirov, A. V. Fursikov, Optimal Control, MTsNMO, Moscow, 2008
[5] I. S. Grigor'ev, K. G. Grigor'ev, “On application of solutions of spacecraft trajectory optimization problems in impulse setting to optimal control problems for a limited thrust spacecraft. I”, Space Investig., 45:4 (2007), 358–366
[6] I. S. Grigor'ev, K. G. Grigor'ev, “On application of solutions of spacecraft trajectory optimization problems in impulse setting to optimal control problems for a limited thrust spacecraft. II”, Space Investig., 45:6 (2007), 553–563
[7] I. S. Grigor'ev, K. G. Grigor'ev, Yu. D. Petrikova, “On fastest maneuvers of a spacecraft with large limited thrust jet in a gravitational field in vacuum”, Space Investig., 38:3 (2000), 171–192 | MR
[8] K. G. Grigor'ev, “On maneuvers of a spacecraft with minimal mass consumption in a limited time”, Space Investig., 32:2 (1994), 45–60
[9] G. L. Grodzovskiy, Yu. N. Ivanov, V. V. Tokarev, Mechanics of Space Flight with Low Thrust, Nauka, Moscow, 1969
[10] D. F. Davidenko, “On one new method of numerical solution for systems of nonlinear equations”, Rep. Acad. Sci. USSR, 88:4 (1953), 601–602 | MR | Zbl
[11] Yu. A. Zakharov, Designing Interorbital Spacecraft. Choosing Trajectories and Design Parameters, Mashinostroenie, Moscow, 1984
[12] A. V. Ivanyukhin, V. G. Petukhov, “Thrust minimization problem and its applications”, Space Investig., 53:4 (2015), 320–331 | DOI
[13] M. A. Krasnosel'skiy, G. M. Vaynikko, P. P. Zabreyko, Ya. B. Rutitskiy, V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka, Moscow, 1969
[14] E. B. Lee, L. Markus, Foundations of Optimal Control Theory, Nauka, Moscow, 1972
[15] D. F. Lawden, Optimal Trajectories for Space Navigation, Mir, Moscow, 1966
[16] J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Mir, Moscow, 1975
[17] V. G. Petukhov, “Optimization of interplanetary trajectories of spacecraft with perfectly regulated jet by means of continuation method”, Space Investig., 46:3 (2008), 224–237
[18] V. G. Petukhov, “Continuation method for optimization of interplanetary trajectories with low thrust”, Space Investig., 50:3 (2012), 258–270
[19] L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze, E. F. Mishchenko, Mathematical Theory of Optimal Processes, Nauka, Moscow, 1969
[20] A. A. Sukhanov, Astrodynamics, IKI RAN, Moscow, 2010
[21] A. F. Filippov, “On some problems of optimal regulation theory”, Bull. MSU, 2 (1959), 25–32 | Zbl
[22] Ph. Hartman, Ordinary Differential Equations, Mir, Moscow, 1970
[23] M. Kholodniok, A. Klich, M. Kubichek, M. Marek, Methods of Analysis for Nonlinear Dynamical Models, Mir, Moscow, 1991
[24] V. I. Shalashilin, E. B. Kuznetsov, Method of continuation of solutions with respect to parameter and optimal optimization, Editorial URSS, Moscow, 1999
[25] Caillau J. B., Gergaud J., Noailles J., “3D geosynchronous transfer of a satellite: continuation on the thrust”, J. Optim. Theory Appl., 118:3 (2003), 541–565 | DOI | MR | Zbl
[26] Cesari L., Optimization – theory and applications. Problems with ordinary differential equations, Springer, New York–Heidelberg–Berlin, 1983 | MR | Zbl
[27] Gergaud J., Haberkorn T., “Homotopy method for minimum consumption orbit transfer problem”, ESAIM Control Optim. Calc. Var., 12:2 (2006), 294–310 | DOI | MR | Zbl
[28] Irving J. H., “Low thrust flight: variable exhaust velocity in gravitational fields”, Space Technol., 10:4 (1959), 10-01–10-54
[29] Kopp R. E., Moyer H. G., “Necessary conditions for singular extremals”, AIAA J., 3:8 (1965), 1439–1444 | DOI | Zbl
[30] Lyness J. N., “Numerical algorithms based on the theory of complex variables”, Proc. ACM 22nd Nat. Conf., Thompson Book Co., 1967, 124–134
[31] Neustadt L. W., “A general theory of minimum-fuel space trajectories”, J. Soc. Indust. Appl. Math. Ser. A: Control, 3:2 (1965), 317–356 | DOI | MR | Zbl
[32] Oberle H. J., Taubert K., “Existence and multiple solutions of the minimum-fuel orbit transfer problem”, J. Optim. Theory Appl., 95:2 (1997), 243–262 | DOI | MR | Zbl
[33] Squire W., Trapp G., “Using complex variables to estimate derivatives of real functions”, SIAM Rev., 40 (1998), 110–112 | DOI | MR | Zbl