Stationary solutions of Vlasov equations for high-temperature two-component plasma
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 19-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first mixed problem for the Vlasov–Poisson equations in infinite cylinder. This problem describes evolution of density of distribution for ions and electrons in a high-temperature plasma in the presence of an outer magnetic field. We construct stationary solutions of the Vlasov–Poisson system of equations with the trivial potential of the self-consistent electric field describing two-component plasma in infinite cylinder such that their supports are located in a distance from the boundary of the domain.
@article{CMFD_2016_62_a1,
     author = {Yu. O. Belyaeva},
     title = {Stationary solutions of {Vlasov} equations for high-temperature two-component plasma},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/}
}
TY  - JOUR
AU  - Yu. O. Belyaeva
TI  - Stationary solutions of Vlasov equations for high-temperature two-component plasma
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 19
EP  - 31
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/
LA  - ru
ID  - CMFD_2016_62_a1
ER  - 
%0 Journal Article
%A Yu. O. Belyaeva
%T Stationary solutions of Vlasov equations for high-temperature two-component plasma
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 19-31
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/
%G ru
%F CMFD_2016_62_a1
Yu. O. Belyaeva. Stationary solutions of Vlasov equations for high-temperature two-component plasma. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 19-31. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/