Stationary solutions of Vlasov equations for high-temperature two-component plasma
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first mixed problem for the Vlasov–Poisson equations in infinite cylinder. This problem describes evolution of density of distribution for ions and electrons in a high-temperature plasma in the presence of an outer magnetic field. We construct stationary solutions of the Vlasov–Poisson system of equations with the trivial potential of the self-consistent electric field describing two-component plasma in infinite cylinder such that their supports are located in a distance from the boundary of the domain.
@article{CMFD_2016_62_a1,
     author = {Yu. O. Belyaeva},
     title = {Stationary solutions of {Vlasov} equations for high-temperature two-component plasma},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/}
}
TY  - JOUR
AU  - Yu. O. Belyaeva
TI  - Stationary solutions of Vlasov equations for high-temperature two-component plasma
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 19
EP  - 31
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/
LA  - ru
ID  - CMFD_2016_62_a1
ER  - 
%0 Journal Article
%A Yu. O. Belyaeva
%T Stationary solutions of Vlasov equations for high-temperature two-component plasma
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 19-31
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/
%G ru
%F CMFD_2016_62_a1
Yu. O. Belyaeva. Stationary solutions of Vlasov equations for high-temperature two-component plasma. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 19-31. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a1/

[1] A. A. Arsen'ev, “Existence in the large of a weak solution of Vlasov's system of equations”, J. Comput. Math. Math. Phys., 15:1 (1975), 136–147 | MR | Zbl

[2] V. V. Vedenyapin, “Boundary value problems for a stationary Vlasov equation”, Rep. Acad. Sci. USSR, 290:4 (1986), 777–780 | MR

[3] V. V. Vedenyapin, “Classification of stationary solutions of the Vlasov equation on a torus and a boundary value problem”, Rep. Russ. Acad. Sci., 323:6 (1992), 1004–1006 | Zbl

[4] A. A. Vlasov, “On vibrational properties of electronic gas”, J. Experiment. Theoret. Phys., 8:3 (1938), 291–318 | Zbl

[5] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 48–58 | MR | Zbl

[6] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Progr. Math. Sci., 63:4 (2008), 93–130 | DOI | MR | Zbl

[7] V. P. Maslov, “Equations of the self-consistent field”, Totals Sci. Tech. Contemp. Probl. Math., 11, 1978, 153–234 | MR | Zbl

[8] S. I. Pokhozhaev, “On stationary solutions of the Vlasov–Poisson equations”, Differ. Equ., 46:4 (2010), 527–534 | MR | Zbl

[9] A. L. Skubachevskii, “On unique solvability of mixed problems for the Vlasov–Poisson system of equations in a half-space”, Rep. Acad. Sci. USSR, 443:4 (2012), 431–434 | Zbl

[10] A. L. Skubachevskii, “Mixed problems for the Vlasov–Poisson system of equations in a half-space”, Proc. Math. Inst. Russ. Acad. Sci., 283, 2013, 204–232 | Zbl

[11] A. L. Skubachevskii, “The Vlasov–Poisson equations for two-component plasma in homogeneous magnetic field”, Progr. Math. Sci., 69:2 (2014), 107–148 | DOI | MR | Zbl

[12] Batt J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differ. Equ., 25:3 (1977), 342–364 | DOI | MR | Zbl

[13] Batt J., Fabian K., “Stationary solutions of the relativistic Vlasov–Maxwell system of plasma physics”, Chinese Ann. Math. Ser. B, 14:3 (1993), 253–278 | MR | Zbl

[14] Batt J., Faltenbacher W., Horst E., “Stationary spherically symmetric models in stellar dynamics”, Arch. Ration. Mech. Anal., 93:2 (1986), 159–183 | DOI | MR | Zbl

[15] Braasch P., Semilineare elliptische Differentialgleichungen und das Vlasov–Maxwell-System, Ph D. Thesis, München, 1997

[16] DiPerna R. J., Lions P. L., “Global weak solutions of Vlasov–Maxwell systems”, Commun. Pure Appl. Math., 42:6 (1989), 729–757 | DOI | MR | Zbl

[17] Greengard C., Raviart P.-A., “A boundary value problem for the stationary Vlasov–Poisson equations: the plane diode”, Commun. Pure Appl. Math., 43:4 (1990), 473–507 | DOI | MR | Zbl

[18] Guo Y., “Regularity for the Vlasov equations in a half space”, Indiana Univ. Math. J., 43:1 (1994), 255–320 | DOI | MR | Zbl

[19] Pfaffelmoser K., “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differ. Equ., 95:2 (1992), 281–303 | DOI | MR | Zbl

[20] Rein G., “Existence of stationary, collisionless plasmas in bounded domains”, Math. Methods Appl. Sci., 15:5 (1992), 365–374 | DOI | MR | Zbl

[21] Schaffer J., “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Commun. Part. Differ. Equ., 16:8–9 (1991), 1313–1335 | DOI | MR

[22] Skubachevskii A. L., “Nonlocal elliptic problems in infinite cylinder and applications”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 847–868 | DOI | MR | Zbl

[23] Weckler J., “On the initial-boundary-value problem for the Vlasov–Poisson system: existence of weak solutions and stability”, Arch. Ration. Mech. Anal., 130:2 (1995), 145–161 | DOI | MR | Zbl