On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 103-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, explicit integral volume formulas for arbitrary compact hyperbolic octahedra with $\mathrm{mm2}$-symmetry are obtained in terms of dihedral angles. Also we give an algorithm for calculation of volume of such octahedra in spherical space.
@article{CMFD_2016_61_a3,
     author = {V. A. Krasnov and E. Sh. Khisyametdinova},
     title = {On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {61},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
AU  - E. Sh. Khisyametdinova
TI  - On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 103
EP  - 114
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/
LA  - ru
ID  - CMFD_2016_61_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%A E. Sh. Khisyametdinova
%T On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 103-114
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/
%G ru
%F CMFD_2016_61_a3
V. A. Krasnov; E. Sh. Khisyametdinova. On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 103-114. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/

[1] N. V. Abrosimov, “On volumes of polyhedra in a space of constant curvature”, Bull. Kemerovo State Univ., 2011, no. 3/1, 7–13

[2] N. V. Abrosimov, G. A. Baygonakova, “Hyperbolic octahedron with $mmm$-symmetry”, Sib. Electron. Math. Bull., 10 (2013), 123–140 | MR | Zbl

[3] N. V. Abrosimov, M. Godoy-Molina, A. D. Mednykh, “On the volume of a spherical octahedron with symmetries”, Contemp. Math. Appl., 60 (2008), 3–12 | MR

[4] D. V. Alekseevskiy, E. B. Vinberg, A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Totals Sci. Tech. Contemp. Probl. Math., 29, 1988, 1–146 | MR | Zbl

[5] G. A. Baygonakova, M. Godoy-Molina, A. D. Mednykh, “On geometric properties of hyperbolic octahedron with $mmm$-symmetry”, Bull. Kemerovo State Univ., 2011, no. 3/1, 13–18

[6] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, “Some applications of the volume formula for an octahedron”, Math. Notes, 76:1 (2004), 27–43 | DOI | MR | Zbl

[7] V. A. Krasnov, “On integral expressions for volumes of hyperbolic tetrahedra”, Contemp. Math. Fundam. Directions, 49, 2013, 89–98

[8] V. A. Krasnov, “On the volume of hyperbolic octahedra with nontrivial symmetry”, Contemp. Math. Fundam. Directions, 51, 2013, 74–86

[9] N. I. Lobachevskiy, “Imaginary geometry”, Complete Set of Works, v. 3, OGIZ-GITTL, Moscow–Leningrad, 1949

[10] Bolyai J., “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987 | MR

[11] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl

[12] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Rus. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl

[13] Kneser H., “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340 | Zbl

[14] Leibon G., The symmetries of hyperbolic volume, Preprint, 2002

[15] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc., 6:1 (1982), 307–332 | DOI | MR

[16] Mohanty Y., “The Regge symmetry is a scissors congruence in hyperbolic space”, Algebr. Geom. Topol., 3 (2003), 1–31 | DOI | MR | Zbl

[17] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1-2 (2005), 153–163 | DOI | MR | Zbl

[18] Murakami J., The volume formulas for a spherical tetrahedron, 2011, arXiv: 1011.2584v4 | MR

[19] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Commun. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl

[20] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI

[21] Sforza G., “Spazi metrico-proiettivi”, Ric. Esten. Differ. Ser., 8:3 (1906), 3–66

[22] Ushijima A., “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl