Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_61_a3, author = {V. A. Krasnov and E. Sh. Khisyametdinova}, title = {On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {103--114}, publisher = {mathdoc}, volume = {61}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/} }
TY - JOUR AU - V. A. Krasnov AU - E. Sh. Khisyametdinova TI - On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 103 EP - 114 VL - 61 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/ LA - ru ID - CMFD_2016_61_a3 ER -
%0 Journal Article %A V. A. Krasnov %A E. Sh. Khisyametdinova %T On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 103-114 %V 61 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/ %G ru %F CMFD_2016_61_a3
V. A. Krasnov; E. Sh. Khisyametdinova. On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 103-114. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/
[1] N. V. Abrosimov, “On volumes of polyhedra in a space of constant curvature”, Bull. Kemerovo State Univ., 2011, no. 3/1, 7–13
[2] N. V. Abrosimov, G. A. Baygonakova, “Hyperbolic octahedron with $mmm$-symmetry”, Sib. Electron. Math. Bull., 10 (2013), 123–140 | MR | Zbl
[3] N. V. Abrosimov, M. Godoy-Molina, A. D. Mednykh, “On the volume of a spherical octahedron with symmetries”, Contemp. Math. Appl., 60 (2008), 3–12 | MR
[4] D. V. Alekseevskiy, E. B. Vinberg, A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Totals Sci. Tech. Contemp. Probl. Math., 29, 1988, 1–146 | MR | Zbl
[5] G. A. Baygonakova, M. Godoy-Molina, A. D. Mednykh, “On geometric properties of hyperbolic octahedron with $mmm$-symmetry”, Bull. Kemerovo State Univ., 2011, no. 3/1, 13–18
[6] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, “Some applications of the volume formula for an octahedron”, Math. Notes, 76:1 (2004), 27–43 | DOI | MR | Zbl
[7] V. A. Krasnov, “On integral expressions for volumes of hyperbolic tetrahedra”, Contemp. Math. Fundam. Directions, 49, 2013, 89–98
[8] V. A. Krasnov, “On the volume of hyperbolic octahedra with nontrivial symmetry”, Contemp. Math. Fundam. Directions, 51, 2013, 74–86
[9] N. I. Lobachevskiy, “Imaginary geometry”, Complete Set of Works, v. 3, OGIZ-GITTL, Moscow–Leningrad, 1949
[10] Bolyai J., “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987 | MR
[11] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl
[12] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Rus. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[13] Kneser H., “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340 | Zbl
[14] Leibon G., The symmetries of hyperbolic volume, Preprint, 2002
[15] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc., 6:1 (1982), 307–332 | DOI | MR
[16] Mohanty Y., “The Regge symmetry is a scissors congruence in hyperbolic space”, Algebr. Geom. Topol., 3 (2003), 1–31 | DOI | MR | Zbl
[17] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1-2 (2005), 153–163 | DOI | MR | Zbl
[18] Murakami J., The volume formulas for a spherical tetrahedron, 2011, arXiv: 1011.2584v4 | MR
[19] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Commun. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl
[20] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI
[21] Sforza G., “Spazi metrico-proiettivi”, Ric. Esten. Differ. Ser., 8:3 (1906), 3–66
[22] Ushijima A., “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl