On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 103-114

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, explicit integral volume formulas for arbitrary compact hyperbolic octahedra with $\mathrm{mm2}$-symmetry are obtained in terms of dihedral angles. Also we give an algorithm for calculation of volume of such octahedra in spherical space.
@article{CMFD_2016_61_a3,
     author = {V. A. Krasnov and E. Sh. Khisyametdinova},
     title = {On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {61},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
AU  - E. Sh. Khisyametdinova
TI  - On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 103
EP  - 114
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/
LA  - ru
ID  - CMFD_2016_61_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%A E. Sh. Khisyametdinova
%T On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 103-114
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/
%G ru
%F CMFD_2016_61_a3
V. A. Krasnov; E. Sh. Khisyametdinova. On the volume formula for a~hyperbolic octahedron with $\mathrm{mm2}$-symmetry. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 103-114. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a3/