Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 164-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the initial-boundary value problem $$ \left\{\begin{array}{ll}u_t=[\varphi(u)]_{xx}+\varepsilon[\psi(u)]_{txx}\quad\text{in}~\Omega\times(0,T],\\ \varphi(u)+\varepsilon[\psi(u)]_t=0 \quad\text{in}~\partial\Omega\times(0,T],\\ u=u_0\ge0\quad\text{in}~\Omega\times\{0\}, \end{array}\right. $$ with Radon measure-valued initial data, by assuming that the regularizing term $\psi$ is increasing and bounded (the cases of power-type or logarithmic $\psi$ were dealt with in [2,3] in any space dimension). The function $\varphi$ is nonmonotone and bounded, and either (i) decreasing and vanishing at infinity, or (ii) increasing at infinity. Existence of solutions in a space of positive Radon measures is proven in both cases. Moreover, a general result proving spontaneous appearance of singularities in case (i) is given. The case of a cubic-like $\varphi$ is also discussed, to point out the influence of the behavior at infinity of $\varphi$ on the regularity of solutions.
@article{CMFD_2016_60_a5,
     author = {A. Tesei},
     title = {Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {164--183},
     publisher = {mathdoc},
     volume = {60},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/}
}
TY  - JOUR
AU  - A. Tesei
TI  - Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 164
EP  - 183
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/
LA  - ru
ID  - CMFD_2016_60_a5
ER  - 
%0 Journal Article
%A A. Tesei
%T Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 164-183
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/
%G ru
%F CMFD_2016_60_a5
A. Tesei. Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 164-183. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/