Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_60_a5, author = {A. Tesei}, title = {Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {164--183}, publisher = {mathdoc}, volume = {60}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/} }
TY - JOUR AU - A. Tesei TI - Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 164 EP - 183 VL - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/ LA - ru ID - CMFD_2016_60_a5 ER -
A. Tesei. Pseudo-parabolic regularization of forward-backward parabolic equations with bounded nonlinearities. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 164-183. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a5/
[1] Barenblatt G. I., Bertsch M., Dal Passo R., Ughi M., “A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow”, SIAM J. Math. Anal., 24 (1993), 1414–1439 | DOI | MR
[2] Bertsch M., Smarrazzo F., Tesei A., “Pseudo-parabolic regularization of forward-backward parabolic equations: a logarithmic nonlinearity”, Anal. PDE, 6 (2013), 1719–1754 | DOI | MR
[3] Bertsch M., Smarrazzo F., Tesei A., “Pseudo-parabolic regularization of forward-backward parabolic equations: power-type nonlinearities”, J. Reine Angew. Math., 712 (2016), 51–80 | MR
[4] Bertsch M., Smarrazzo F., Tesei A., Forward-backward parabolic equations with pseudo-parabolic regularization and bounded nonlinearities decreasing at infinity: existence of solutions, Preprint, 2015
[5] Bertsch M., Smarrazzo F., Tesei A., Pseudo-parabolic regularization of forward-backward parabolic equations: bounded nonlinearities increasing at infinity, Preprint, 2015
[6] Bertsch M., Smarrazzo F., Tesei A., Forward-backward parabolic equations with pseudo-parabolic regularization and bounded nonlinearities decreasing at infinity: qualitative properties of solutions, In preparation
[7] Brokate M., Sprekels J., Hysteresis and phase transitions, Springer, Berlin, 1996 | MR | Zbl
[8] Evans L. C., Weak convergence methods for nonlinear partial differential equations, AMS, Providence, 1990 | MR | Zbl
[9] Giaquinta M., Modica G., Souček J., Cartesian currents in the calculus of variations, Springer, Berlin, 1998 | MR | Zbl
[10] Mascia C., Terracina A., Tesei A., “Two-phase entropy solutions of a forward-backward parabolic equation”, Arch. Ration. Mech. Anal., 194 (2009), 887–925 | DOI | MR | Zbl
[11] Novick-Cohen A., Pego L., “Stable patterns in a viscous diffusion equation”, Trans. Amer. Math. Soc., 324 (1991), 331–351 | DOI | MR | Zbl
[12] Padròn V., “Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations”, Comm. Partial Differential Equations, 23 (1998), 457–486 | DOI | MR | Zbl
[13] Perona P., Malik J., “Scale space and edge detection using anisotropic diffusion”, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629–639 | DOI
[14] Plotnikov P. I., “Passing to the limit with respect to viscosity in an equation with variable parabolicity direction”, Differ. Equ., 30:4 (1994), 614–622 | MR | Zbl
[15] Serre D., Systems of conservation laws, v. 1, Hyperbolicity, entropies, shock waves, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[16] Smarrazzo F., “On a class of equations with variable parabolicity direction”, Discrete Contin. Dyn. Syst., 22 (2008), 729–758 | DOI | MR | Zbl
[17] Smarrazzo F., Tesei A., “Degenerate regularization of forward-backward parabolic equations: the regularized problem”, Arch. Ration. Mech. Anal., 204 (2012), 85–139 | DOI | MR | Zbl
[18] Smarrazzo F., Tesei A., “Degenerate regularization of forward-backward parabolic equations: the vanishing viscosity limit”, Math. Ann., 355 (2013), 551–584 | DOI | MR | Zbl