Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_60_a2, author = {O. N. Kirillov}, title = {Dissipation-induced instabilities in magnetized flows}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {82--101}, publisher = {mathdoc}, volume = {60}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a2/} }
O. N. Kirillov. Dissipation-induced instabilities in magnetized flows. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 82-101. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a2/
[1] Arnold V. I., “On matrices depending on parameter”, Progr. Math. Sci., 26:2 (1971), 101–114 (in Russian) | MR | Zbl
[2] Balbus S. A., Hawley J. F., “A powerful local shear instability in weakly magnetized disks 1. Linear analysis”, Astrophys. J., 376 (1991), 214–222 | DOI
[3] Balbus S. A., Hawley J. F., “A powerful local shear instability in weakly magnetized disks 4. Nonaxisymmetric perturbations”, Astrophys. J., 400 (1992), 214–222 | DOI
[4] Beletsky V. V., Levin E. M., “Stability of a ring of connected satellites”, Acta Astron., 12 (1985), 765–769 | DOI | Zbl
[5] Bilharz H., “Bemerkung zu einem Satze von Hurwitz”, Z. Angew. Math. Mech., 24 (1944), 77–82 | DOI | MR | Zbl
[6] Bloch A. M., Krishnaprasad P. S., Marsden J. E., Ratiu T. S., “Dissipation-induced instabilities”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 37–90 | MR | Zbl
[7] Bogoyavlenskij O. I., “Unsteady equipartition MHD solutions”, J. Math. Phys., 45 (2004), 381–390 | DOI | MR | Zbl
[8] Boldyrev S., Huynh D., Pariev V., “Analog of astrophysical magnetorotational instability in a Couette–Taylor flow of polymer fluids”, Phys. Rev. E, 80 (2009), 066310 | DOI
[9] Bolotin V. V., Nonconservative problems of the theory of elastic stability, Pergamon Press, Oxford–London–New York–Paris, 1963 | MR | Zbl
[10] Bottema O., “The Routh–Hurwitz condition for the biquadratic equation”, Indag. Math., 18 (1956), 403–406 | DOI | MR
[11] Bridges T. J., Dias F., “Enhancement of the Benjamin–Feir instability with dissipation”, Phys. Fluids, 19 (2007), 104104 | DOI | Zbl
[12] Chandrasekhar S., “On the stability of the simplest solution of the equations of hydromagnetics”, Proc. Natl. Acad. Sci. USA, 42 (1956), 273–276 | DOI | MR | Zbl
[13] Chandrasekhar S., “The stability of nondissipative Couette flow in hydromagnetics”, Proc. Natl. Acad. Sci. USA, 46 (1960), 253–257 | DOI | MR | Zbl
[14] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Oxford University Press, Oxford, 1961 | MR | Zbl
[15] Chandrasekhar S., A scientific autobiography: S. Chandrasekhar, World Scientific, Singapore, 2010 | Zbl
[16] Dobrokhotov S., Shafarevich A., “Parametrix and the asymptotics of localized solutions of the Navier–Stokes equations in $R^3$, linearized on a smooth flow”, Math. Notes, 51 (1992), 47–54 | DOI | MR | Zbl
[17] Ebrahimi F., Lefebvre B., Forest C. B., Bhattacharjee A., “Global Hall-MHD simulations of magnetorotational instability in the plasma Couette flow experiment”, Phys. Plasmas, 18 (2011), 062904 | DOI
[18] Eckhardt B., Yao D., “Local stability analysis along Lagrangian paths”, Chaos Solitons Fractals, 5:11 (1995), 2073–2088 | DOI | MR | Zbl
[19] Eckhoff K. S., “On stability for symmetric hyperbolic systems, I”, J. Differential Equations, 40 (1981), 94–115 | DOI | MR | Zbl
[20] Eckhoff K. S., “Linear waves and stability in ideal magnetohydrodynamics”, Phys. Fluids, 30 (1987), 3673–3685 | DOI | Zbl
[21] Friedlander S., Vishik M. M., “On stability and instability criteria for magnetohydrodynamics”, Chaos, 5 (1995), 416–423 | DOI | MR | Zbl
[22] Golovin S. V., Krutikov M. K., “Complete classification of stationary flows with constant total pressure of ideal incompressible infinitely conducting fluid”, J. Phys. A, 45 (2012), 235501 | DOI | MR | Zbl
[23] Ji H., Balbus S., “Angular momentum transport in astrophysics and in the lab”, Phys. Today, 2013, August, 27–33
[24] Kapitsa P. L., “Stability and passage through the critical speed of the fast spinning rotors in the presence of damping”, Z. Tech. Phys., 9 (1939), 124–147
[25] Kirillov O. N., “Campbell diagrams of weakly anisotropic flexible rotors”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2703–2723 | DOI | MR | Zbl
[26] Kirillov O. N., “Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 20120051 | DOI | MR | Zbl
[27] Kirillov O. N., Nonconservative stability problems of modern physics, De Gruyter, Berlin–Boston, 2013 | MR | Zbl
[28] Kirillov O. N., Seyranian A. P., “Metamorphoses of characteristic curves in circulatory systems”, J. Appl. Math. Mech., 66:3 (2002), 371–385 | DOI | MR | Zbl
[29] Kirillov O. N., Stefani F., “On the relation of standard and helical magnetorotational instability”, Astrophys. J., 712 (2010), 52–68 | DOI
[30] Kirillov O. N., Stefani F., “Standard and helical magnetorotational instability: How singularities create paradoxal phenomena in MHD”, Acta Appl. Math., 120 (2012), 177–198 | DOI | MR | Zbl
[31] Kirillov O. N., Stefani F., “Extending the range of the inductionless magnetorotational instability”, Phys. Rev. Lett., 111 (2013), 061103 | DOI
[32] Kirillov O. N., Stefani F., Fukumoto Y., “A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit”, Astrophys. J., 756:1 (2012), 83 | DOI
[33] Kirillov O. N., Stefani F., Fukumoto Y., “Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence”, Fluid Dyn. Res., 46 (2014), 031403 | DOI | MR | Zbl
[34] Kirillov O. N., Stefani F., Fukumoto Y., “Local instabilities in magnetized rotational flows: A short-wavelength approach”, J. Fluid Mech., 760 (2014), 591–633 | DOI | MR | Zbl
[35] Kirillov O. N., Verhulst F., “Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella?”, Z. Angew. Math. Mech., 90:6 (2010), 462–488 | DOI | MR | Zbl
[36] Krechetnikov R., Marsden J. E., “Dissipation-induced instabilities in finite dimensions”, Rev. Modern Phys., 79:2 (2007), 519–553 | DOI | MR | Zbl
[37] Krueger E. R., Gross A., Di Prima R. C., “On relative importance of Taylor-vortex and nonaxisymmetric modes in flow between rotating cylinders”, J. Fluid Mech., 24:3 (1966), 521–538 | DOI
[38] Kucherenko V. V., Kryvko A., “Interaction of Alfvén waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid”, Russ. J. Math. Phys., 20:1 (2013), 56–67 | DOI | MR | Zbl
[39] Landman M. J., Saffman P. G., “The three-dimensional instability of strained vortices in a viscous fluid”, Phys. Fluids, 30 (1987), 2339–2342 | DOI
[40] Langford W. F., “Hopf meets Hamilton under Whitney's umbrella”, Solid Mech. Appl., 110 (2003), 157–165 | MR | Zbl
[41] Latter H. N., Rein H., Ogilvie G. I., “The gravitational instability of a stream of coorbital particles”, Mon. Not. R. Astron. Soc., 423 (2012), 1267–1276 | DOI
[42] Liu W., Goodman J., Herron I., Ji H., “Helical magnetorotational instability in magnetized Taylor–Couette flow”, Phys. Rev. E, 74:1 (2006), 056302 | DOI | MR
[43] MacKay R. S., “Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation”, Phys. Lett. A, 155 (1991), 266–268 | DOI | MR
[44] Maddocks J. H., Overton M. L., “Stability theory for dissipatively perturbed Hamiltonian systems”, Comm. Pure Appl. Math., 48 (1995), 583–610 | DOI | MR | Zbl
[45] Michael D. H., “The stability of an incompressible electrically conducting fluid rotating about an axis when current flows parallel to the axis”, Mathematika, 1 (1954), 5–50 | DOI | MR
[46] Montgomery D., “Hartmann, Lundquist, and Reynolds: The role of dimensionless numbers in nonlinear magnetofluid behavior”, Plasma Phys. Control. Fusion, 35 (1993), B105–B113 | DOI
[47] Ogilvie G. I., Pringle J. E., “The nonaxisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field”, Mon. Not. R. Astron. Soc., 279 (1996), 152–164 | DOI
[48] Ogilvie G. I., Potter A. T., “Magnetorotational-type instability in Couette–Taylor flow of a viscoelastic polymer liquid”, Phys. Rev. Lett., 100 (2008), 074503 | DOI
[49] Ogilvie G. I., Proctor M. R. E., “On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities”, J. Fluid Mech., 476 (2003), 389–409 | DOI | MR | Zbl
[50] Rayleigh J. W. S., “On the dynamics of revolving fluids”, Proc. R. Soc. Lond. A, 93 (1917), 148–154 | DOI
[51] Rüdiger G., Gellert M., Schultz M., Hollerbach R., “Dissipative Taylor–Couette flows under the influence of helical magnetic fields”, Phys. Rev. E, 82 (2010), 016319 | DOI
[52] Rüdiger G., Gellert M., Schultz M., Hollerbach R., Stefani F., “The azimuthal magnetorotational instability (AMRI)”, Mon. Not. R. Astron. Soc., 438 (2014), 271–277 | DOI
[53] Rüdiger G., Kitchatinov L., Hollerbach R., Magnetic processes in astrophysics, Wiley-VCH, New York, 2013
[54] Seilmayer M., Galindo V., Gerbeth G., Gundrum T., Stefani F., Gellert M., Rüdiger G., Schultz M., Hollerbach R., “Experimental evidence for nonaxisymmetric magnetorotational instability in an azimuthal magnetic field”, Phys. Rev. Lett., 113 (2014), 024505 | DOI
[55] Smith D. M., “The motion of a rotor carried by a flexible shaft in flexible bearings”, Proc. R. Soc. Lond. A, 142 (1933), 92–118 | DOI
[56] Squire J., Bhattacharjee A., “Nonmodal growth of the magnetorotational instability”, Phys. Rev. Lett., 113 (2014), 025006 | DOI
[57] Stefani F., Gailitis A., Gerbeth G., “Magnetohydrodynamic experiments on cosmic magnetic fields”, Z. Angew. Math. Mech., 88 (2008), 930–954 | DOI | MR | Zbl
[58] Swaters G. E., “Modal interpretation for the Ekman destabilization of inviscidly stable baroclinic flow in the Phillips model”, J. Phys. Oceanogr., 40 (2010), 830–839 | DOI
[59] Thorpe S. A., Smyth W. D., Li L., “The effect of small viscosity and diffusivity on the marginal stability of stably stratified shear flows”, J. Fluid Mech., 731 (2013), 461–476 | DOI | MR | Zbl
[60] Velikhov E. P., “Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field”, Sov. Phys. JETP-USSR, 9 (1959), 995–998 | MR
[61] Vishik M., Friedlander S., “Asymptotic methods for magnetohydrodynamic instability”, Quart. Appl. Math., 56 (1998), 377–398 | MR | Zbl
[62] Yakubovich V. A., Starzhinskii V. M., Linear differential equations with periodic coefficients, Wiley, New York, 1975 | Zbl
[63] Ziegler H., “Die Stabilitätskriterien der Elastomechanik”, Ing.-Arch., 20 (1952), 49–56 | DOI | MR | Zbl
[64] Zou R., Fukumoto Y., “Local stability analysis of the azimuthal magnetorotational instability of ideal MHD flows”, Prog. Theor. Exp. Phys., 2014:11 (2014), 113J01 | DOI | Zbl