On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 23-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considering one-dimensional Carleman and Godunov–Sultangazin equations, we obtain the local equilibrium conditions for solutions of the Cauchy problem with finite energy and periodic initial data. Moreover, we prove the exponential stabilization to the equilibrium state.
@article{CMFD_2016_60_a1,
     author = {O. A. Vasil'eva and S. A. Dukhnovskii and E. V. Radkevich},
     title = {On the nature of local equilibrium in the {Carleman} and {Godunov--Sultangazin} equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {23--81},
     publisher = {mathdoc},
     volume = {60},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/}
}
TY  - JOUR
AU  - O. A. Vasil'eva
AU  - S. A. Dukhnovskii
AU  - E. V. Radkevich
TI  - On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 23
EP  - 81
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/
LA  - ru
ID  - CMFD_2016_60_a1
ER  - 
%0 Journal Article
%A O. A. Vasil'eva
%A S. A. Dukhnovskii
%A E. V. Radkevich
%T On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 23-81
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/
%G ru
%F CMFD_2016_60_a1
O. A. Vasil'eva; S. A. Dukhnovskii; E. V. Radkevich. On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 23-81. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/

[1] Boltzmann L., “On the Maxwell method for derivation of equations of hydrodinamics from the kinetic gas theory”, Reports of Britain Association (1894). To the memory of L. Boltzmann, Nauka, Moscow, 1984, 307–321 (in Russian)

[2] Vasil'eva O. A., Dukhnovskiy S. A., Radkevich E. V., “On local equilibrium of the Carleman equation”, Probl. Math. Anal., 78, 2015, 165–190 (in Russian) | Zbl

[3] Godunov S. K., Sultangazin U. M., “On discrete models of the Boltzman kinetic equation”, Progress Math. Sci., 26:3(159) (1971), 3–51 (in Russian) | MR | Zbl

[4] Il'in O. V., “Study of existence and stability of solutions of the Carleman kinetic system”, J. Comput. Math. Math. Phys., 47:12 (2007), 2076–2087 (in Russian) | MR

[5] Nikolis G., Prigozhin I., Self-Organization in Nonequilibrium Systems (from Dissipative Structures to Ordering via Fluctuations), Mir, Moscow, 1979 (in Russian)

[6] Radkevich E. V., Mathematical Issues in Nonequilibrium Processes, Tamara Rozhkovskaya, Novosibirsk, 2007 (in Russian)

[7] Radkevich E. V., “On the behavior of solutions of the Cauchy problem for the two-dimensional discrete kinetic equation at large time scales”, Contemp. Math. Fundam. Directions, 47, 2013, 108–139 (in Russian)

[8] Broadwell T. E., “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414 | DOI | MR | Zbl

[9] Komech A., Kopylova E., Dispersion decay and scattering theory, John Willey and Sons, Naboken, 2012 | MR | Zbl

[10] Kopylova E., “On long-time decay for magnetic Schrödinger and Klein—Gordon equations”, Proc. Steklov Inst. Math., 278 (2012), 121–129 | DOI | MR | Zbl