Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_60_a1, author = {O. A. Vasil'eva and S. A. Dukhnovskii and E. V. Radkevich}, title = {On the nature of local equilibrium in the {Carleman} and {Godunov--Sultangazin} equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {23--81}, publisher = {mathdoc}, volume = {60}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/} }
TY - JOUR AU - O. A. Vasil'eva AU - S. A. Dukhnovskii AU - E. V. Radkevich TI - On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 23 EP - 81 VL - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/ LA - ru ID - CMFD_2016_60_a1 ER -
%0 Journal Article %A O. A. Vasil'eva %A S. A. Dukhnovskii %A E. V. Radkevich %T On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 23-81 %V 60 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/ %G ru %F CMFD_2016_60_a1
O. A. Vasil'eva; S. A. Dukhnovskii; E. V. Radkevich. On the nature of local equilibrium in the Carleman and Godunov--Sultangazin equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 23-81. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a1/
[1] Boltzmann L., “On the Maxwell method for derivation of equations of hydrodinamics from the kinetic gas theory”, Reports of Britain Association (1894). To the memory of L. Boltzmann, Nauka, Moscow, 1984, 307–321 (in Russian)
[2] Vasil'eva O. A., Dukhnovskiy S. A., Radkevich E. V., “On local equilibrium of the Carleman equation”, Probl. Math. Anal., 78, 2015, 165–190 (in Russian) | Zbl
[3] Godunov S. K., Sultangazin U. M., “On discrete models of the Boltzman kinetic equation”, Progress Math. Sci., 26:3(159) (1971), 3–51 (in Russian) | MR | Zbl
[4] Il'in O. V., “Study of existence and stability of solutions of the Carleman kinetic system”, J. Comput. Math. Math. Phys., 47:12 (2007), 2076–2087 (in Russian) | MR
[5] Nikolis G., Prigozhin I., Self-Organization in Nonequilibrium Systems (from Dissipative Structures to Ordering via Fluctuations), Mir, Moscow, 1979 (in Russian)
[6] Radkevich E. V., Mathematical Issues in Nonequilibrium Processes, Tamara Rozhkovskaya, Novosibirsk, 2007 (in Russian)
[7] Radkevich E. V., “On the behavior of solutions of the Cauchy problem for the two-dimensional discrete kinetic equation at large time scales”, Contemp. Math. Fundam. Directions, 47, 2013, 108–139 (in Russian)
[8] Broadwell T. E., “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414 | DOI | MR | Zbl
[9] Komech A., Kopylova E., Dispersion decay and scattering theory, John Willey and Sons, Naboken, 2012 | MR | Zbl
[10] Kopylova E., “On long-time decay for magnetic Schrödinger and Klein—Gordon equations”, Proc. Steklov Inst. Math., 278 (2012), 121–129 | DOI | MR | Zbl