Nonlinear integral equations with kernels of potential type on a~segment
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 5-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We study various classes of nonlinear equations containing an operator of potential type (Riesz potential). By the monotone operators method in the Lebesgue spaces of real-valued functions $L_p(a,b)$ we prove global theorems on existence, uniqueness, estimates, and methods of obtaining of their solutions. We consider corollaries as applications of our results.
@article{CMFD_2016_60_a0,
     author = {S. N. Askhabov},
     title = {Nonlinear integral equations with kernels of potential type on a~segment},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {60},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear integral equations with kernels of potential type on a~segment
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 5
EP  - 22
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/
LA  - ru
ID  - CMFD_2016_60_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear integral equations with kernels of potential type on a~segment
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 5-22
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/
%G ru
%F CMFD_2016_60_a0
S. N. Askhabov. Nonlinear integral equations with kernels of potential type on a~segment. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 5-22. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/