Nonlinear integral equations with kernels of potential type on a segment
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 5-22
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study various classes of nonlinear equations containing an operator of potential type (Riesz potential). By the monotone operators method in the Lebesgue spaces of real-valued functions $L_p(a,b)$ we prove global theorems on existence, uniqueness, estimates, and methods of obtaining of their solutions. We consider corollaries as applications of our results.
@article{CMFD_2016_60_a0,
     author = {S. N. Askhabov},
     title = {Nonlinear integral equations with kernels of potential type on a~segment},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--22},
     year = {2016},
     volume = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear integral equations with kernels of potential type on a segment
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 5
EP  - 22
VL  - 60
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/
LA  - ru
ID  - CMFD_2016_60_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear integral equations with kernels of potential type on a segment
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 5-22
%V 60
%U http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/
%G ru
%F CMFD_2016_60_a0
S. N. Askhabov. Nonlinear integral equations with kernels of potential type on a segment. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, Tome 60 (2016), pp. 5-22. http://geodesic.mathdoc.fr/item/CMFD_2016_60_a0/

[1] Askhabov S. N., Singular Integral Equations and Equations of Convolution Type with Monotone Nonlinearity, Maykop State Techn. Univ., Maykop, 2004 (in Russian) | MR

[2] Askhabov S. N., Nonlinear Equations Convolution of Type, Fizmatlit, Moscow, 2009 (in Russian) | MR

[3] Askhabov S. N., “Nonlinear equations with weight operators of potential type in Lebesgue spaces”, Bull. Samara State Techn. Univ. Phys.-Math. Sci., 2011, no. 4(25), 160–164 | DOI

[4] Askhabov S. N., “Approximate solution of nonlinear discrete equations of convolution type”, Contemp. Math. Fundam. Directions, 45, 2012, 18–31 (in Russian) | MR

[5] Askhabov S. N., “Nonlinear integral equations with kernels of convolution type on a semiaxis”, Vladikavkaz Math. J., 15:4 (2013), 3–11 (in Russian) | Zbl

[6] Vaynberg M. M., Variational Methods of Investigation of Nonlinear Operators, GITTL, Moscow, 1956 (in Russian)

[7] Vaynberg M. M., Variational Method and Monotone Operators Method in Theory of Nonlinear Equations, Nauka, Moscow, 1972 (in Russian) | MR

[8] Gaevskiy Kh., Greger K., Zakharias K., Nonlinear Operator Equations and Operator Differential Equations, Mir, Moscow, 1978 (in Russian) | MR

[9] Zabreyko P. P., Koshelev A. I., etc., Integral Equations, Nauka, Moscow, 1968 (in Russian) | MR

[10] Kachurovskiy R. I., “Nonlinear monotone operators in Banach spaces”, Progress Math. Sci., 23:2 (1968), 121–168 (in Russian) | MR | Zbl

[11] Moroz V. B., “Hammerstein Equations with kernels of Riesz potential type”, Abstr. Int. Conf. “Boundary-value problems, special functions, and fractional calculus” (Minsk, Belarus, 16–20 Feb. 1996), 249–254 (in Russian)

[12] Nakhushev A. M., Fractional Calculus and Its Applications, Fizmatlit, Moscow, 2003 (in Russian)

[13] Polyanin A. D., Manzhirov A. V., Handbook on Integral Equations, Nauka, Moscow, 1978 (in Russian)

[14] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and Derivatives of Fractional Order and Some Their Applications, Nauka i tekhnika, Minsk, 1987 (in Russian) | MR

[15] Edvards R., Fourier Series in Contemporary Exposition, v. 1, Mir, Moscow, 1985 (in Russian)

[16] Brezis H., Browder F. E., “Some new results about Hammerstein equations”, Bull. Am. Math. Soc. (N.S.), 80:3 (1974), 567–572 | DOI | MR | Zbl

[17] Brezis H., Browder F. E., “Nonlinear integral equations and systems of Hammerstein type”, Adv. Math., 18 (1975), 115–147 | DOI | MR | Zbl

[18] Porter D., Stirling D., Integral equations. A practical treatment, from spectral theory to applications, Cambr. Univ. Press, Cambridge, 1990 | MR | Zbl