Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_59_a8, author = {A. G. Sergeev}, title = {Magnetic {Schr\"odinger} operator from the point of view of noncommutative geometry}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {192--200}, publisher = {mathdoc}, volume = {59}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/} }
TY - JOUR AU - A. G. Sergeev TI - Magnetic Schr\"odinger operator from the point of view of noncommutative geometry JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 192 EP - 200 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/ LA - ru ID - CMFD_2016_59_a8 ER -
A. G. Sergeev. Magnetic Schr\"odinger operator from the point of view of noncommutative geometry. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 192-200. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/
[1] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35 (1994), 5373–5451 | DOI | MR | Zbl
[2] Berezin F. A., Shubin V. A., The Schrödinger equation, Kluwer, Boston, 1991 | Zbl
[3] Connes A., Noncommutative geometry, Academic Press, San Diego, 1994 | MR | Zbl
[4] Gruber M., “Noncommutative Bloch theory”, J. Math. Phys., 42 (2001), 2438–2465 | DOI | MR | Zbl
[5] Husemoller D., Fibre bundles, Springer, New York, 1994 | MR
[6] Kordyukov Yu., Mathai V., Shubin M. A., “Equivalence of spectral properties in semiclassical limit and a vanishing theorem for higher traces in K-theory”, J. Reine Angew. Math., 581 (2005), 193–236 | DOI | MR | Zbl
[7] Laughlin B., “Quantized Hall conductivity in two dimensions”, Phys. Rev. B, 23 (1981), 5632 | DOI
[8] Thouless D. J., Kohmono M., Nightingale M. P., den Nijs M., “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982), 405–408 | DOI
[9] Xia J., “Geometric invariants of the quantum Hall effect”, Commun. Math. Phys., 119 (1988), 29–50 | DOI | MR | Zbl