Magnetic Schr\"odinger operator from the point of view of noncommutative geometry
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 192-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an interpretation of magnetic Schrödinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of $C^*$-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of magnetic Schrödinger operator. We show how this idea can be applied to the integer quantum Hall effect.
@article{CMFD_2016_59_a8,
     author = {A. G. Sergeev},
     title = {Magnetic {Schr\"odinger} operator from the point of view of noncommutative geometry},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {192--200},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Magnetic Schr\"odinger operator from the point of view of noncommutative geometry
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 192
EP  - 200
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/
LA  - ru
ID  - CMFD_2016_59_a8
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Magnetic Schr\"odinger operator from the point of view of noncommutative geometry
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 192-200
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/
%G ru
%F CMFD_2016_59_a8
A. G. Sergeev. Magnetic Schr\"odinger operator from the point of view of noncommutative geometry. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 192-200. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/

[1] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35 (1994), 5373–5451 | DOI | MR | Zbl

[2] Berezin F. A., Shubin V. A., The Schrödinger equation, Kluwer, Boston, 1991 | Zbl

[3] Connes A., Noncommutative geometry, Academic Press, San Diego, 1994 | MR | Zbl

[4] Gruber M., “Noncommutative Bloch theory”, J. Math. Phys., 42 (2001), 2438–2465 | DOI | MR | Zbl

[5] Husemoller D., Fibre bundles, Springer, New York, 1994 | MR

[6] Kordyukov Yu., Mathai V., Shubin M. A., “Equivalence of spectral properties in semiclassical limit and a vanishing theorem for higher traces in K-theory”, J. Reine Angew. Math., 581 (2005), 193–236 | DOI | MR | Zbl

[7] Laughlin B., “Quantized Hall conductivity in two dimensions”, Phys. Rev. B, 23 (1981), 5632 | DOI

[8] Thouless D. J., Kohmono M., Nightingale M. P., den Nijs M., “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982), 405–408 | DOI

[9] Xia J., “Geometric invariants of the quantum Hall effect”, Commun. Math. Phys., 119 (1988), 29–50 | DOI | MR | Zbl