@article{CMFD_2016_59_a8,
author = {A. G. Sergeev},
title = {Magnetic {Schr\"odinger} operator from the point of view of noncommutative geometry},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {192--200},
year = {2016},
volume = {59},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/}
}
A. G. Sergeev. Magnetic Schrödinger operator from the point of view of noncommutative geometry. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 192-200. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a8/
[1] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35 (1994), 5373–5451 | DOI | MR | Zbl
[2] Berezin F. A., Shubin V. A., The Schrödinger equation, Kluwer, Boston, 1991 | Zbl
[3] Connes A., Noncommutative geometry, Academic Press, San Diego, 1994 | MR | Zbl
[4] Gruber M., “Noncommutative Bloch theory”, J. Math. Phys., 42 (2001), 2438–2465 | DOI | MR | Zbl
[5] Husemoller D., Fibre bundles, Springer, New York, 1994 | MR
[6] Kordyukov Yu., Mathai V., Shubin M. A., “Equivalence of spectral properties in semiclassical limit and a vanishing theorem for higher traces in K-theory”, J. Reine Angew. Math., 581 (2005), 193–236 | DOI | MR | Zbl
[7] Laughlin B., “Quantized Hall conductivity in two dimensions”, Phys. Rev. B, 23 (1981), 5632 | DOI
[8] Thouless D. J., Kohmono M., Nightingale M. P., den Nijs M., “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982), 405–408 | DOI
[9] Xia J., “Geometric invariants of the quantum Hall effect”, Commun. Math. Phys., 119 (1988), 29–50 | DOI | MR | Zbl