Quadratic interaction estimate for hyperbolic conservation laws: an overview
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 148-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the joint work with S. Bianchini [8] (see also [6,7]), we proved a quadratic interaction estimate for the system of conservation laws \begin{equation*} \begin{cases} u_t+f(u)_x=0,\\ u(t=0)=u_0(x), \end{cases} \end{equation*} where $u\colon[0,\infty)\times\mathbb R\to\mathbb R^n$, $f\colon\mathbb R^n\to\mathbb R^n$ is strictly hyperbolic, and $\operatorname{Tot.Var.}(u_0)\ll1$ For a wavefront solution in which only two wavefronts at a time interact, such estimate can be written in the form \begin{equation*} \sum_{\text{время взаимодействия }t_j}\frac{|\sigma(\alpha_j)-\sigma(\alpha'_j)||\alpha_j||\alpha'_j|}{|\alpha_j|+|\alpha'_j|}\leq C(f)\operatorname{Tot.Var.}(u_0)^2, \end{equation*} where $\alpha_j$ and $\alpha'_j$ are the wavefronts interacting at the interaction time $t_j,$ $\sigma(\cdot)$ is the speed, $|\cdot|$ denotes the strength, and $C(f)$ is a constant depending only on $f$ (see [8, Theorem 1.1] or Theorem 3.1 in the present paper for a more general form). The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simplified setting, in which: all the main ideas of the construction are presented; all the technicalities of the proof in the general setting [8] are avoided.
@article{CMFD_2016_59_a6,
     author = {S. Modena},
     title = {Quadratic interaction estimate for hyperbolic conservation laws: an overview},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {148--172},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/}
}
TY  - JOUR
AU  - S. Modena
TI  - Quadratic interaction estimate for hyperbolic conservation laws: an overview
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 148
EP  - 172
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/
LA  - ru
ID  - CMFD_2016_59_a6
ER  - 
%0 Journal Article
%A S. Modena
%T Quadratic interaction estimate for hyperbolic conservation laws: an overview
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 148-172
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/
%G ru
%F CMFD_2016_59_a6
S. Modena. Quadratic interaction estimate for hyperbolic conservation laws: an overview. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 148-172. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/

[1] Ancona F., Marson A., “Sharp convergence rate of the Glimm scheme for general nonlinear hyperbolic systems”, Commun. Math. Phys., 302 (2011), 581–630 | DOI | MR | Zbl

[2] Baiti P., Bressan A., “The semigroup generated by a Temple class system with large data”, Differ. Integr. Equ., 10 (1997), 401–418 | MR | Zbl

[3] Bianchini S., “The semigroup generated by a Temple class system with nonconvex flux function”, Differ. Integr. Equ., 13:10–12 (2000), 1529–1550 | MR | Zbl

[4] Bianchini S., “Interaction estimates and Glimm functional for general hyperbolic systems”, Discrete Contin. Dyn. Syst., 9 (2003), 133–166 | DOI | MR | Zbl

[5] Bianchini S., Bressan A., “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. Math. (2), 161 (2005), 223–342 | DOI | MR | Zbl

[6] Bianchini S., Modena S., “On a quadratic functional for scalar conservation laws”, J. Hyperbolic Differ. Equ., 11:2 (2014), 355–435 | DOI | MR | Zbl

[7] Bianchini S., Modena S., “Quadratic interaction functional for systems of conservation laws: a case study”, Bull. Inst. Math. Acad. Sin. (N.S.), 9:3 (2014), 487–546 | MR | Zbl

[8] Bianchini S., Modena S., “Quadratic interaction functional for general systems of conservation laws”, Commun. Math. Phys., 338:3 (2015), 1075–1152 | DOI | MR | Zbl

[9] Bressan A., Hyperbolic systems of conservation laws. The one dimensional Cauchy problem, Oxford University Press, 2000 | MR | Zbl

[10] Bressan A., Marson A., “Error bounds for a deterministic version of the Glimm scheme”, Arch. Ration. Mech. Anal., 142 (1998), 155–176 | DOI | MR | Zbl

[11] Dafermos C., Hyberbolic conservation laws in continuum physics, Springer, 2005 | MR

[12] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Commun. Pure Appl. Math., 18 (1965), 697–715 | DOI | MR | Zbl

[13] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl

[14] Lax P. D., “Shock waves and entropy”, Contribution to nonlinear functional analysis, Academic Press, New York, 1971, 603–634 | MR

[15] Liu T. P., “The Riemann problem for general $2\times2$ conservation laws”, Trans. Am. Math. Soc., 199 (1974), 89–112 | MR | Zbl

[16] Liu T. P., “The Riemann problem for general systems of conservation laws”, J. Differ. Equ., 18 (1975), 218–234 | DOI | MR | Zbl

[17] Liu T. P., “The deterministic version of the Glimm scheme”, Commun. Math. Phys., 57 (1977), 135–148 | DOI | MR | Zbl

[18] Temple B., “Systems of conservation laws with invariant submanifolds”, Trans. Am. Math. Soc., 280 (1983), 781–795 | DOI | MR | Zbl