Quadratic interaction estimate for hyperbolic conservation laws: an overview
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 148-172

Voir la notice de l'article provenant de la source Math-Net.Ru

In the joint work with S. Bianchini [8] (see also [6,7]), we proved a quadratic interaction estimate for the system of conservation laws \begin{equation*} \begin{cases} u_t+f(u)_x=0,\\ u(t=0)=u_0(x), \end{cases} \end{equation*} where $u\colon[0,\infty)\times\mathbb R\to\mathbb R^n$, $f\colon\mathbb R^n\to\mathbb R^n$ is strictly hyperbolic, and $\operatorname{Tot.Var.}(u_0)\ll1$ For a wavefront solution in which only two wavefronts at a time interact, such estimate can be written in the form \begin{equation*} \sum_{\text{время взаимодействия }t_j}\frac{|\sigma(\alpha_j)-\sigma(\alpha'_j)||\alpha_j||\alpha'_j|}{|\alpha_j|+|\alpha'_j|}\leq C(f)\operatorname{Tot.Var.}(u_0)^2, \end{equation*} where $\alpha_j$ and $\alpha'_j$ are the wavefronts interacting at the interaction time $t_j,$ $\sigma(\cdot)$ is the speed, $|\cdot|$ denotes the strength, and $C(f)$ is a constant depending only on $f$ (see [8, Theorem 1.1] or Theorem 3.1 in the present paper for a more general form). The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simplified setting, in which: all the main ideas of the construction are presented; all the technicalities of the proof in the general setting [8] are avoided.
@article{CMFD_2016_59_a6,
     author = {S. Modena},
     title = {Quadratic interaction estimate for hyperbolic conservation laws: an overview},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {148--172},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/}
}
TY  - JOUR
AU  - S. Modena
TI  - Quadratic interaction estimate for hyperbolic conservation laws: an overview
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 148
EP  - 172
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/
LA  - ru
ID  - CMFD_2016_59_a6
ER  - 
%0 Journal Article
%A S. Modena
%T Quadratic interaction estimate for hyperbolic conservation laws: an overview
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 148-172
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/
%G ru
%F CMFD_2016_59_a6
S. Modena. Quadratic interaction estimate for hyperbolic conservation laws: an overview. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 148-172. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/