Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_59_a6, author = {S. Modena}, title = {Quadratic interaction estimate for hyperbolic conservation laws: an overview}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {148--172}, publisher = {mathdoc}, volume = {59}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/} }
S. Modena. Quadratic interaction estimate for hyperbolic conservation laws: an overview. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 148-172. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a6/
[1] Ancona F., Marson A., “Sharp convergence rate of the Glimm scheme for general nonlinear hyperbolic systems”, Commun. Math. Phys., 302 (2011), 581–630 | DOI | MR | Zbl
[2] Baiti P., Bressan A., “The semigroup generated by a Temple class system with large data”, Differ. Integr. Equ., 10 (1997), 401–418 | MR | Zbl
[3] Bianchini S., “The semigroup generated by a Temple class system with nonconvex flux function”, Differ. Integr. Equ., 13:10–12 (2000), 1529–1550 | MR | Zbl
[4] Bianchini S., “Interaction estimates and Glimm functional for general hyperbolic systems”, Discrete Contin. Dyn. Syst., 9 (2003), 133–166 | DOI | MR | Zbl
[5] Bianchini S., Bressan A., “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. Math. (2), 161 (2005), 223–342 | DOI | MR | Zbl
[6] Bianchini S., Modena S., “On a quadratic functional for scalar conservation laws”, J. Hyperbolic Differ. Equ., 11:2 (2014), 355–435 | DOI | MR | Zbl
[7] Bianchini S., Modena S., “Quadratic interaction functional for systems of conservation laws: a case study”, Bull. Inst. Math. Acad. Sin. (N.S.), 9:3 (2014), 487–546 | MR | Zbl
[8] Bianchini S., Modena S., “Quadratic interaction functional for general systems of conservation laws”, Commun. Math. Phys., 338:3 (2015), 1075–1152 | DOI | MR | Zbl
[9] Bressan A., Hyperbolic systems of conservation laws. The one dimensional Cauchy problem, Oxford University Press, 2000 | MR | Zbl
[10] Bressan A., Marson A., “Error bounds for a deterministic version of the Glimm scheme”, Arch. Ration. Mech. Anal., 142 (1998), 155–176 | DOI | MR | Zbl
[11] Dafermos C., Hyberbolic conservation laws in continuum physics, Springer, 2005 | MR
[12] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Commun. Pure Appl. Math., 18 (1965), 697–715 | DOI | MR | Zbl
[13] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl
[14] Lax P. D., “Shock waves and entropy”, Contribution to nonlinear functional analysis, Academic Press, New York, 1971, 603–634 | MR
[15] Liu T. P., “The Riemann problem for general $2\times2$ conservation laws”, Trans. Am. Math. Soc., 199 (1974), 89–112 | MR | Zbl
[16] Liu T. P., “The Riemann problem for general systems of conservation laws”, J. Differ. Equ., 18 (1975), 218–234 | DOI | MR | Zbl
[17] Liu T. P., “The deterministic version of the Glimm scheme”, Commun. Math. Phys., 57 (1977), 135–148 | DOI | MR | Zbl
[18] Temple B., “Systems of conservation laws with invariant submanifolds”, Trans. Am. Math. Soc., 280 (1983), 781–795 | DOI | MR | Zbl