Differential equations with degenerate, depending on the unknown function operator at the derivative
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 119-147
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop the theory of generalized Jordan chains of multiparameter operator functions $A(\lambda)\colon E_1\to E_2$, $\lambda\in\Lambda$, $\dim\Lambda=k$, $\dim E_1=\dim E_2=n$, where $A_0=A(0)$ is a noninvertible operator. To simplify the notation, in 1–3 the geometric multiplicity $\lambda_0$ is set to 1, i.e. $\dim N(A_0)=1$, $N(A_0)=\operatorname{span}\{\varphi\}$, $\dim N^\ast(A_0^\ast)=1$, $N^\ast(A_0^\ast)=\operatorname{span}\{\psi\}$, and the operator function $A(\lambda)$ is supposed to be linear with respect to $\lambda$. For the polynomial dependence of $A(\lambda)$, in 4 we consider a linearization. However, the bifurcation existence theorems hold in the case of several Jordan chains as well.
We consider applications to degenerate differential equations of the form $[A_{0}+R(\cdot,x)]x'=Bx$.
@article{CMFD_2016_59_a5,
author = {B. V. Loginov and Yu. B. Rousak and L. R. Kim-Tyan},
title = {Differential equations with degenerate, depending on the unknown function operator at the derivative},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {119--147},
publisher = {mathdoc},
volume = {59},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/}
}
TY - JOUR AU - B. V. Loginov AU - Yu. B. Rousak AU - L. R. Kim-Tyan TI - Differential equations with degenerate, depending on the unknown function operator at the derivative JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 119 EP - 147 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/ LA - ru ID - CMFD_2016_59_a5 ER -
%0 Journal Article %A B. V. Loginov %A Yu. B. Rousak %A L. R. Kim-Tyan %T Differential equations with degenerate, depending on the unknown function operator at the derivative %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 119-147 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/ %G ru %F CMFD_2016_59_a5
B. V. Loginov; Yu. B. Rousak; L. R. Kim-Tyan. Differential equations with degenerate, depending on the unknown function operator at the derivative. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 119-147. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/