Differential equations with degenerate, depending on the unknown function operator at the derivative
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 119-147

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the theory of generalized Jordan chains of multiparameter operator functions $A(\lambda)\colon E_1\to E_2$, $\lambda\in\Lambda$, $\dim\Lambda=k$, $\dim E_1=\dim E_2=n$, where $A_0=A(0)$ is a noninvertible operator. To simplify the notation, in 1–3 the geometric multiplicity $\lambda_0$ is set to 1, i.e. $\dim N(A_0)=1$, $N(A_0)=\operatorname{span}\{\varphi\}$, $\dim N^\ast(A_0^\ast)=1$, $N^\ast(A_0^\ast)=\operatorname{span}\{\psi\}$, and the operator function $A(\lambda)$ is supposed to be linear with respect to $\lambda$. For the polynomial dependence of $A(\lambda)$, in 4 we consider a linearization. However, the bifurcation existence theorems hold in the case of several Jordan chains as well. We consider applications to degenerate differential equations of the form $[A_{0}+R(\cdot,x)]x'=Bx$.
@article{CMFD_2016_59_a5,
     author = {B. V. Loginov and Yu. B. Rousak and L. R. Kim-Tyan},
     title = {Differential equations with degenerate, depending on the unknown function operator at the derivative},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {119--147},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/}
}
TY  - JOUR
AU  - B. V. Loginov
AU  - Yu. B. Rousak
AU  - L. R. Kim-Tyan
TI  - Differential equations with degenerate, depending on the unknown function operator at the derivative
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 119
EP  - 147
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/
LA  - ru
ID  - CMFD_2016_59_a5
ER  - 
%0 Journal Article
%A B. V. Loginov
%A Yu. B. Rousak
%A L. R. Kim-Tyan
%T Differential equations with degenerate, depending on the unknown function operator at the derivative
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 119-147
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/
%G ru
%F CMFD_2016_59_a5
B. V. Loginov; Yu. B. Rousak; L. R. Kim-Tyan. Differential equations with degenerate, depending on the unknown function operator at the derivative. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 119-147. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a5/