Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_59_a1, author = {P. A. Velmisov and A. V. Ankilov}, title = {Stability of solutions of initial boundary value problems of aerohydroelasticity}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {35--52}, publisher = {mathdoc}, volume = {59}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a1/} }
TY - JOUR AU - P. A. Velmisov AU - A. V. Ankilov TI - Stability of solutions of initial boundary value problems of aerohydroelasticity JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 35 EP - 52 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a1/ LA - ru ID - CMFD_2016_59_a1 ER -
%0 Journal Article %A P. A. Velmisov %A A. V. Ankilov %T Stability of solutions of initial boundary value problems of aerohydroelasticity %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 35-52 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a1/ %G ru %F CMFD_2016_59_a1
P. A. Velmisov; A. V. Ankilov. Stability of solutions of initial boundary value problems of aerohydroelasticity. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 35-52. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a1/
[1] A. V. Ankilov, P. A. Velmisov, Stability of Viscoelastic Elements of Walls of Flowing Channels, UlGTU, Ul'yanovsk, 2000 (in Russian)
[2] A. V. Ankilov, P. A. Velmisov, V. D. Gorbokonenko, Yu. V. Pokladova, Mathematical Modeling of Mechanical System “Pipeline–Pressure Sensorm”, UlGTU, Ul'yanovsk, 2008 (in Russian)
[3] A. V. Ankilov, P. A. Velmisov, Dynamics and Stability of Elastic Plates at Aerohydrodynamic Influence, UlGTU, Ul'yanovsk, 2009 (in Russian)
[4] A. V. Ankilov, P. A. Velmisov, Mathematical Modelling in Problems of Dynamic Stability of Deformable Elements of Constructions at Aerohydrodynamic Influence, UlGTU, Ul'yanovsk, 2013 (in Russian)
[5] V. I. Van'ko, I. K. Marchevskii, G. A. Shcheglov, “Numerical and analytical method for studying the stability of airfoil equilibrium positions in flow”, Vestn. MGTU im. N. E. Baumana. Ser. Estestv. Nauki, 5 (2011), 3–10 (in Russian)
[6] P. A. Velmisov, G. M. Gorshkov, G. K. Ryabov, Hydrodynamic radiator, Patent 2062662, Russian Federation, MPK6 V 06V 1/18, 1/20, Applicant and patentee No. 5038746/28, claimed 20.07.92, published 27.06.96, Ulyanovsk State Tech. Univ., 1996 (in Russian)
[7] P. A. Velmisov, S. V. Kireev, Mathematical Modeling in Problems of Static Instability of Elastic Elements of Constructions at Aerohydrodynamic Influence, UlGTU, Ul'yanovsk, 2011 (in Russian)
[8] P. A. Velmisov, A. A. Molgachev, Mathematical Modeling in Problems of Dynamic Stability of Viscoelastic Elements of Flowing Channels, UlGTU, Ul'yanovsk, 2012 (in Russian)
[9] Yu. P. Barmetov, I. A. Dobrodeich, “To calculation of nonstationary currents of the compressed liquid in the pipeline”, Izv. vuzov. Aviatsionnaya tekhnika, 2006, no. 1, 18–21 (in Russian)
[10] A. V. Zvyagin, “The movement of viscous liquid in the channel with elastic boundaries”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2005, no. 1, 50–54 (in Russian) | Zbl
[11] B. A. Ershov, G. A. Kuteeva, “Fluctuations of ideal liquid in a rectangular vessel with an elastic insert on a wall. The accounting of internal friction in insert material”, Vestn. SPbU. Ser. 1, 2005, no. 2, 86–94 (in Russian)
[12] L. Kollatc, Problems on Eigenvalues, Nauka, Moscow, 1968 (in Russian)
[13] N. V. Naumova, V. A. Ershov, D. N. Ivanov, “Deformation of elastic spherical shell, fixed at the equator, in the flow of a viscous incompressible fluid”, Vestn. SPbU. Ser. 3, 2011, no. 3, 124–130 (in Russian)
[14] V. V. Ovchinnicov, V. M. Popov, S. V. Filimonov, “Application of the extended hypothesis of harmonicity for the calculation of flutter characteristics of the aircraft”, Nauchn. vestn. Mosk. gos. tekhn. un-ta grazhd. aviatsii, 2013, no. 195, 93–100 (in Russian)
[15] V. G. Sokolov, A. V. Bereznev, “The equations of the movement of a curvilinear site of the pipeline with a liquid stream”, Izv. vuzov. Neft' i gaz, 2004, no. 6, 76–80 (in Russian)
[16] V. G. Sokolov, I. O. Razov, “Parametrical vibrations and dynamic stability of long-distance gas pipelines at above-ground laying”, Vestn. grazhd. inzhenerov, 2014, no. 2, 65–68 (in Russian)
[17] Balakrishnan A. V., “Toward a mathematical theory of aeroelasticity”, System modeling and optimization, Proc. 21st IFIP TC7 Conf. (Sophia Antipolis, France, July 21–25, 2003), Kluwer Academic Publishers, Boston, 2005, 1–24 | DOI | MR | Zbl
[18] Bendiksen O. O., Seber G., “Fluid-structure interactions with both structural and fluid nonlinearities”, J. Sound Vibr., 315:3 (2008), 664–684 | DOI
[19] Dimitrienko Yu. I., Koryakov M. N., Zakharov A. A., Stroganov A. S., “Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft”, Math. Model. Num. Methods, 2:3-3(3) (2014), 3–24
[20] Florea R., Hall K. C., Dowell E. H., “Analysis of eigenvalues and reduced order model of nonstationary transonic potential flow of profiles to define the boundaries of flutter”, J. Aircraft, 37:3 (2000), 454–462 | DOI
[21] Masahide Ya., Koji I., Takefumi U., Itsuma Yu., “Shock-stall-flutter of a two-dimensional airfoil”, AIAA Journal, 42:2 (2004), 215–219 | DOI
[22] Mogilevich L. I., Popova A. A., Popov V. A., “On the dynamic interaction of an elastic cylindrical shell with a fluid laminar stream inside in application to pipeline transportation”, Sci. Tech. Transport, 2007, no. 2, 69–72
[23] Plyusnin A. V., “Boundary-element method modelling of inside and outside nonstationary interaction of aircraft body and liquid”, Math. Model. Num. Methods, 2:2-2(2) (2014), 77–100
[24] Soltani N., Esfahanian V., Haddadpour H., “Analytical prediction of panel flutter using unsteady potential flow”, J. Aircraft, 40:4 (2003), 805–807 | DOI
[25] Paidoussis M. P., “The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics”, J. Sound Vibr., 310:3 (2008), 462–492 | DOI
[26] Wu X.-Sh., Wu J.-Sh., “Numerical method for the calculation of the swept wing flutter”, Trans. Beijing Inst. Tech., 27:5 (2007), 385–389