The Riesz basis property with brackets for Dirac systems with summable potentials
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 128-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $\mathbb H=(L_2[0,\pi])^2$, we study the Dirac operator $\mathcal L_{P,U},$ generated by the differential expression $\ell_P(\mathbf y)=B\mathbf y'+P\mathbf y$, where $$ B=\begin{pmatrix} -i0\\ 0 \end{pmatrix}, \qquad P(x)= \begin{pmatrix} p_1(x) p_2(x)\\ p_3(x) p_4(x) \end{pmatrix}, \qquad \mathbf y(x)= \begin{pmatrix} y_1(x)\\ y_2(x) \end{pmatrix}, $$ and the regular boundary conditions $$ U(\mathbf y)= \begin{pmatrix} u_{11} u_{12}\\ u_{21} u_{22} \end{pmatrix} \begin{pmatrix} y_1(0)\\ y_2(0) \end{pmatrix}+ \begin{pmatrix} u_{13} u_{14}\\ u_{23} u_{24} \end{pmatrix} \begin{pmatrix} y_1(\pi)\\ y_2(\pi) \end{pmatrix}=0. $$ The elements of the matrix $P$ are assumed to be complex-valued functions summable over $[0,\pi]$. We show that the spectrum of the operator $\mathcal L_{P,U}$ is discrete and consists of eigenvalues $\{\lambda_n\}_{n\in\mathbb Z}$, such that $\lambda_n=\lambda_n^0+o(1)$ as $|n|\to\infty$, where $\{\lambda_n^0\}_{n\in\mathbb Z}$ is the spectrum of the operator $\mathcal L_{0,U}$ with zero potential and the same boundary conditions. If the boundary conditions are strongly regular, then the spectrum of the operator $\mathcal L_{P,U}$ is asymptotically simple. We show that the system of eigenfunctions and associate functions of the operator $\mathcal L_{P,U}$ forms a Riesz base in the space $\mathbb H$ provided that the eigenfunctions are normed. If the boundary conditions are regular, but not strongly regular, then all eigenvalues of the operator $\mathcal L_{0,U}$ are double, all eigenvalues of the operator $\mathcal L_{P,U}$ are asymptotically double, and the system formed by the corresponding two-dimensional root subspaces of the operator $\mathcal L_{P,U},$ is a Riesz base of subspaces (Riesz base with brackets) in the space $\mathbb H$.
@article{CMFD_2015_58_a7,
     author = {A. M. Savchuk and I. V. Sadovnichaya},
     title = {The {Riesz} basis property with brackets for {Dirac} systems with summable potentials},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {128--152},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - I. V. Sadovnichaya
TI  - The Riesz basis property with brackets for Dirac systems with summable potentials
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 128
EP  - 152
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/
LA  - ru
ID  - CMFD_2015_58_a7
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A I. V. Sadovnichaya
%T The Riesz basis property with brackets for Dirac systems with summable potentials
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 128-152
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/
%G ru
%F CMFD_2015_58_a7
A. M. Savchuk; I. V. Sadovnichaya. The Riesz basis property with brackets for Dirac systems with summable potentials. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 128-152. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/

[1] Amirov R. Kh., Guseinov I. M., “Nekotorye klassy operatorov Diraka s singulyarnymi potentsialami”, Diff. uravn., 40:7 (2004), 999–1001 | MR | Zbl

[2] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. Mat., 75:3 (2011), 3–28 | DOI | MR | Zbl

[3] Veliev O. A., Shkalikov A. A., “O bazisnosti Rissa sobstvennykh i prisoedinennykh funktsii periodicheskoi i antiperiodicheskoi zadach Shturma–Liuvillya”, Mat. zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl

[4] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[6] Katsnelson V. E., “Ob usloviyakh bazisnosti sistemy kornevykh vektorov nekotorykh klassov operatorov”, Funkts. analiz i ego prilozh., 1:2 (1967), 39–51 | MR | Zbl

[7] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, Usp. mat. nauk, 26:4 (1971), 15–41 | MR | Zbl

[8] Keselman G. M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam konkretnykh differentsialnykh operatorov”, Izv. vuzov. Ser. Mat., 1964, no. 2, 82–93 | MR | Zbl

[9] Koddington E. A., Levinson N., Teoriya Obyknovennykh differentsialnykh uravnenii, Izd. Inostrannoi Lit., M., 1958

[10] Kornev V. V., Khromov A. P., “Sistema Diraka s nedifferentsiruemym potentsialom i antiperiodicheskimi kraevymi usloviyami”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 13:3 (2013), 28–35 | Zbl

[11] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[12] Lunev A. A., Malamud M. M., “O polnote sistemy kornevykh vektorov dlya sistem pervogo poryadka. Primenenie k zadache Redzhe”, Dokl. RAN, 453:3 (2013), 256–261 | DOI | MR

[13] Lunev A. A., Malamud M. M., “O bazisnosti Rissa sistemy kornevykh vektorov dlya $2\times2$-sistemy tipa Diraka”, Dokl. RAN, 458:3 (2014), 1–6 | MR

[14] Markus A. S., “O razlozhenii po kornevym vektoram slabo vozmuschennogo samosopryazhennogo operatora”, Dokl. AN SSSR, 142:3 (1962), 538–541 | MR | Zbl

[15] Markus A. S., Matsaev V. I., “Teoremy sravneniya spektrov lineinykh operatorov i spektralnye asimptotiki”, Tr. Mosk. Mat. ob-va, 45, 1982, 133–181 | MR | Zbl

[16] Minkin A. M., “Teoremy ravnoskhodimosti dlya differentsialnykh operatorov”, Itogi nauki i tekhn. Sovr. matem. i ee prilozh., 49, 1997, 3631–3715

[17] Mikhailov V. P., “O bazisnosti Rissa v $L_2(0,1)$”, Dokl. AN SSSR, 144 (1962), 981–984

[18] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[19] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[20] Savchuk A. M., Sadovnichaya I. V., “Asimptoticheskie formuly dlya fundamentalnykh reshenii sistemy Diraka s kompleksnoznachnym summiruemym potentsialom”, Diff. uravn., 49:5 (2013), 573–584 | MR | Zbl

[21] Sadovnichaya I. V., “O ravnoskhodimosti razlozhenii v ryady po sobstvennym funktsiyam operatorov Shturma–Liuvillya s potentsialami-raspredeleniyami”, Mat. sb., 201:9 (2010), 61–76 | DOI | MR | Zbl

[22] Sadovnichaya I. V., “Ravnoskhodimost v prostranstvakh Geldera razlozhenii po sobstvennym funktsiyam operatorov Shturma–Liuvillya s potentsialami-raspredeleniyami”, Diff. uravn., 48:5 (2012), 674–685 | MR | Zbl

[23] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i o razlozhenii proizvolnoi funktsii v ryady, Petrograd, 1917

[24] Shkalikov A. A., “O svoistve bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora”, Usp. mat. nauk, 34:5 (1979), 235–236 | MR | Zbl

[25] Shkalikov A. A., “Granichnye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v kraevykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[26] Shkalikov A. A., “Nekotorye voprosy teorii polinomialnykh operatornykh puchkov”, Usp. mat. nauk, 38:3 (1983), 189–190 | MR | Zbl

[27] Albeverio S., Hryniv R. O., Mykytyuk Ya., “Inverse spectral problems for Dirac operators with summable potentials”, Russ. J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl

[28] Birkhoff G. D., “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Am. Math. Soc., 9 (1908), 21–231 | MR

[29] Birkhoff G. D., “Boundary value and expansion ploblems of ordinary linear differential equations”, Trans. Am. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl

[30] Birkhoff G. D., Langer R. E., “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Am. Acad. Arts Sci., 58 (1923), 49–128 | DOI | Zbl

[31] Djakov P., Mityagin B., “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[32] Djakov P., Mityagin B., “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263 (2012), 2300–2332 | DOI | MR | Zbl

[33] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[34] Dunford N., “A survey of the theory of spectral operators”, Bull. Am. Math. Soc., 64 (1958), 217–274 | DOI | MR | Zbl

[35] Lindelöf E., “Sur un principe général de l'analyse et ses applications á la théorie de la représentation conforme”, Acta. Soc. Sc. Fennicae, 46:4 (1915), 6 | Zbl

[36] Malamud M. M., Oridoroga L. L., “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980 | DOI | MR | Zbl

[37] Sadovnichaya I. V., “Equiconvergence theorems for Sturm–Liouville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)”, Eurasian Math. J., 1:1 (2010), 137–146 | MR | Zbl

[38] Savchuk A. M., “Spectral Properties of Dirac Operators on $(0,1)$ with summable potentials”, The Sixth International Conference on Differential and Functional Differential Equations, Abstracts, Moscow, 2011, 63

[39] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[40] Tamarkin J. D., “Sur quelques points de la théorie des équations différentielles linéaires ordinaires et sur la généralisation de la série de Fourier”, Rend. Circ. Mat. Palermo, 34:2 (1912), 345–382 | DOI | Zbl

[41] Tamarkin J. D., “Some general problems of the theory of linear differential equations and expansions of an arbitrary function in series of fundamental functions”, Math. Z., 27:1 (1928), 1–54 | DOI | MR

[42] Trooshin I., Yamamoto M., “Riesz basis of root vectors of a nonsymmetric system of first-order ordinary differential operators and application to inverse eigenvalue problems”, Appl. Anal., 80 (2001), 19–51 | DOI | MR | Zbl

[43] Trooshin I., Yamamoto M., “Spectral properites and an inverse eigenvalue problem for nonsymmetric systems of ordinary differential equations”, J. Inverse Ill-Posed Probl., 10:6 (2002), 643–658 | DOI | MR | Zbl