The Riesz basis property with brackets for Dirac systems with summable potentials
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 128-152

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $\mathbb H=(L_2[0,\pi])^2$, we study the Dirac operator $\mathcal L_{P,U},$ generated by the differential expression $\ell_P(\mathbf y)=B\mathbf y'+P\mathbf y$, where $$ B=\begin{pmatrix} -i0\\ 0 \end{pmatrix}, \qquad P(x)= \begin{pmatrix} p_1(x) p_2(x)\\ p_3(x) p_4(x) \end{pmatrix}, \qquad \mathbf y(x)= \begin{pmatrix} y_1(x)\\ y_2(x) \end{pmatrix}, $$ and the regular boundary conditions $$ U(\mathbf y)= \begin{pmatrix} u_{11} u_{12}\\ u_{21} u_{22} \end{pmatrix} \begin{pmatrix} y_1(0)\\ y_2(0) \end{pmatrix}+ \begin{pmatrix} u_{13} u_{14}\\ u_{23} u_{24} \end{pmatrix} \begin{pmatrix} y_1(\pi)\\ y_2(\pi) \end{pmatrix}=0. $$ The elements of the matrix $P$ are assumed to be complex-valued functions summable over $[0,\pi]$. We show that the spectrum of the operator $\mathcal L_{P,U}$ is discrete and consists of eigenvalues $\{\lambda_n\}_{n\in\mathbb Z}$, such that $\lambda_n=\lambda_n^0+o(1)$ as $|n|\to\infty$, where $\{\lambda_n^0\}_{n\in\mathbb Z}$ is the spectrum of the operator $\mathcal L_{0,U}$ with zero potential and the same boundary conditions. If the boundary conditions are strongly regular, then the spectrum of the operator $\mathcal L_{P,U}$ is asymptotically simple. We show that the system of eigenfunctions and associate functions of the operator $\mathcal L_{P,U}$ forms a Riesz base in the space $\mathbb H$ provided that the eigenfunctions are normed. If the boundary conditions are regular, but not strongly regular, then all eigenvalues of the operator $\mathcal L_{0,U}$ are double, all eigenvalues of the operator $\mathcal L_{P,U}$ are asymptotically double, and the system formed by the corresponding two-dimensional root subspaces of the operator $\mathcal L_{P,U},$ is a Riesz base of subspaces (Riesz base with brackets) in the space $\mathbb H$.
@article{CMFD_2015_58_a7,
     author = {A. M. Savchuk and I. V. Sadovnichaya},
     title = {The {Riesz} basis property with brackets for {Dirac} systems with summable potentials},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {128--152},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - I. V. Sadovnichaya
TI  - The Riesz basis property with brackets for Dirac systems with summable potentials
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 128
EP  - 152
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/
LA  - ru
ID  - CMFD_2015_58_a7
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A I. V. Sadovnichaya
%T The Riesz basis property with brackets for Dirac systems with summable potentials
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 128-152
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/
%G ru
%F CMFD_2015_58_a7
A. M. Savchuk; I. V. Sadovnichaya. The Riesz basis property with brackets for Dirac systems with summable potentials. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 128-152. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a7/