On some degenerate elliptic equations arising in geometric problems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 96-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some fully nonlinear degenerate elliptic operators and we investigate the validity of certain properties related to the maximum principle. In particular, we establish the equivalence between the sign propagation property and the strict positivity of a suitably defined generalized principal eigenvalue. Furthermore, we show that even in the degenerate case considered in the present paper, the well-known condition introduced by Keller–Osserman on the zero-order term is necessary and sufficient for the existence of entire weak subsolutions.
@article{CMFD_2015_58_a5,
     author = {I. Capuzzo Dolcetta and F. Leoni and A. Vitolo},
     title = {On some degenerate elliptic equations arising in geometric problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {96--110},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/}
}
TY  - JOUR
AU  - I. Capuzzo Dolcetta
AU  - F. Leoni
AU  - A. Vitolo
TI  - On some degenerate elliptic equations arising in geometric problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 96
EP  - 110
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/
LA  - ru
ID  - CMFD_2015_58_a5
ER  - 
%0 Journal Article
%A I. Capuzzo Dolcetta
%A F. Leoni
%A A. Vitolo
%T On some degenerate elliptic equations arising in geometric problems
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 96-110
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/
%G ru
%F CMFD_2015_58_a5
I. Capuzzo Dolcetta; F. Leoni; A. Vitolo. On some degenerate elliptic equations arising in geometric problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 96-110. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/

[1] Ambrosio L., Soner H. M., “Level set approach to mean curvature flow in arbitrary codimension”, J. Differ. Geom., 43 (1996), 693–737 | MR | Zbl

[2] Amendola M. E., Galise G., Vitolo A., “Riesz capacity, maximum principle and removable sets of fully nonlinear second order elliptic operators”, Differ. Integr. Equ., 26 (2013), 845–866 | MR | Zbl

[3] Amendola M. E., Galise G., Vitolo A., “On the uniqueness of blow-up solutions of fully nonlinear elliptic equations”, Discrete Contin. Dyn. Syst., 2013, Suppl. (2013), 771–780 | Zbl

[4] Armstrong S. N., “Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations”, J. Differ. Equ., 246:7 (2009), 2958–2987 | DOI | MR | Zbl

[5] Bao J., Ji X., “Necessary and sufficient conditions on solvability for Hessian inequalities”, Proc. Am. Math. Soc., 138 (2010), 175–188 | DOI | MR | Zbl

[6] Bao J., Ji X., “Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations”, J. Differ. Equ., 253 (2012), 2140–2160 | DOI | MR | Zbl

[7] Barles G., Burdeau J., “The Dirichlet problem for semilinear second-order degenerate elliptic equatiions and applications to stochastic exit time control problems”, Commun. Part. Differ. Equ., 20:1–2 (1995), 129–178 | DOI | MR | Zbl

[8] Berestycki H., Capuzzo Dolcetta I., Porretta A., Rossi L., “Maximum principle and generalized principal eigenvalue for degenerate elliptic operators”, J. Math. Pures Appl., 103:5 (2015), 1276–1293 | DOI | MR | Zbl

[9] Berestycki H., Nirenberg L., Varadhan S. R. S., “The principal eigenvalue and maximum principle for second-order elliptic operators in general domains”, Commun. Pure Appl. Math., 47:1 (1994), 47–92 | DOI | MR | Zbl

[10] Berestycki H., Rossi L., “Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains”, Commun. Pure Appl. Math., 68:6 (2015), 1014–1065 | DOI | MR | Zbl

[11] Birindelli I., Demengel F., “First eigenvalue and Maximum principle for fully nonlinear singular operators”, Adv. Differ. Equ., 11:1 (2006), 91–119 | MR | Zbl

[12] Birindelli I., Demengel F., “Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators”, Commun. Pure Appl. Anal., 6:2 (2007), 335–366 | DOI | MR | Zbl

[13] Boccardo L., Gallouet T., Vazquez J. L., “Nonlinear elliptic equations in $\mathbb R^N$ without growth restriction on the data”, J. Differ. Equ., 105:2 (1993), 334–363 | DOI | MR | Zbl

[14] Boccardo L., Gallouet T., Vazquez J. L., “Solutions of nonlinear parabolic equations without growth restrictions on the data”, Electron. J. Differ. Equ., 2001:60 (2001), 1–20 | MR

[15] Brezis H., “Semilinear equations in $\mathbb R^n$ without conditions at infinity”, Appl. Math. Optim., 12 (1984), 271–282 | DOI | MR | Zbl

[16] Caffarelli L. A., Cabré X., Fully nonlinear elliptic equations, Am. Math. Soc., Providence, 1995 | MR | Zbl

[17] Caffarelli L. A., Li Y. Y., Nirenberg L., “Some remarks on singular solutions of nonlinear elliptic equations. III: Viscosity solutions, including parabolic operators”, Commun. Pure Appl. Math., 66 (2013), 109–143 | DOI | MR | Zbl

[18] Cannarsa P., Da Prato G., Frankowska H., “Invariant measures associated to degenerate elliptic operators”, Indiana Univ. Math. J., 59:1 (2010), 53–78 | DOI | MR | Zbl

[19] Capuzzo Dolcetta I., Leoni F., Vitolo A., “Entire subsolutions of fully nonlinear degenerate elliptic equations”, Bull. Inst. Math. Acad. Sin. (N.S.), 9 (2014), 147–161 | MR | Zbl

[20] Capuzzo Dolcetta I., Leoni F., Vitolo A., On the inequality $F(x,D^2u) \geq f(u)+g(u)|Du|^q$, 2014, arXiv: 1501.06836[math.AP]

[21] Crandall M. G., Ishii H., Lions P. L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Am. Math. Soc. (N.S.), 27:1 (1992), 1–67 | DOI | MR | Zbl

[22] D'Ambrosio L., Mitidieri E., “A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities”, Adv. Math., 224 (2010), 967–1020 | DOI | MR | Zbl

[23] Diaz G., “A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller–Osserman condition”, Math. Ann., 353 (2012), 145–159 | DOI | MR | Zbl

[24] Esteban M. J., Felmer P. L., Quaas A., “Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data”, Proc. Edinb. Math. Soc. (2), 53:1 (2010), 125–141 | DOI | MR | Zbl

[25] Fichera G., “Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine”, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. (8), 5 (1956), 1–30 | MR

[26] Franchi B., Lanconelli E., “Une métrique associée à une classe d'opérateurs elliptiques dégénérés”, Proc. Conf. on Linear partial and pseudodifferential operators (Torino, 1982), Rend. Semin. Mat. Univ. Politec. Torino, 1983, 105–114 | MR | Zbl

[27] Friedman A., Pinsky M. A., “Asymptotic stability and spiraling properties for solutions of stochastic equations”, Trans. Am. Math. Soc., 186 (1973), 331–358 | DOI | MR

[28] Galise G., Vitolo A., “Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity”, Int. J. Differ. Equ., 2011 (2011), 453727 | MR | Zbl

[29] Giga Y., Surface evolution equations. A level set approach, Birkhäuser, Basel, 2006 | MR | Zbl

[30] Harvey F. R., Lawson H. B. (Jr.), “Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry”, Surveys in Differential Geometry, 18, International Press, Somerville, 2013, 102–156 | DOI | MR

[31] Harvey F. R., Lawson H. B. (Jr.), “Removable singularities for nonlinear subequations”, Indiana Univ. Math. J., 63 (2014), 1525–1552 | DOI | MR | Zbl

[32] Harvey F. R., Lawson H. B. (Jr.), Characterizing the strong maximum principle, 2014, arXiv: 1309.1738

[33] Hayman N. K., Kennedy P. B., Subharmonic functions, v. I, Academic Press, London, 1976 | Zbl

[34] Ikoma N., Ishii H., “Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 783–812 | DOI | MR | Zbl

[35] Ishii H., “Perron's method for Hamilton–Jacobi equations”, Duke Math. J., 55:2 (1987), 369–384 | DOI | MR | Zbl

[36] Jin Q., Li Y. Y., Xu H., “Nonexistence of positive solutions for some fully nonlinear elliptic equations”, Methods Appl. Anal., 12 (2005), 441–449 | MR | Zbl

[37] Keller J. B., “On solutions of $\Delta u=f(u)$”, Commun. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl

[38] Landkof N. S., Foundations of modern potential theory, Springer, Heidelberg–New York, 1972 | MR | Zbl

[39] Leoni F., “Nonlinear elliptic equations in $\mathbb R^N$ with absorbing zero order terms”, Adv. Differ. Equ., 5 (2000), 681–722 | MR | Zbl

[40] Leoni F., Pellacci B., “Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data”, J. Evol. Equ., 6 (2006), 113–144 | DOI | MR | Zbl

[41] Lions P. L., “Bifurcation and optimal stochastic control”, Nonlinear Anal., 7:2 (1983), 177–207 | DOI | MR

[42] Oberman A., Silvestre L., “The Dirichlet problem for the convex envelope”, Trans. Am. Math. Soc., 363:11 (2011), 5871–5886 | DOI | MR | Zbl

[43] Oleĭnik O. A., Radkevič E. V., Second order equations with nonnegative characteristic form, Plenum Press, New York, 1973 | MR

[44] Osserman R., “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7 (1957), 1141–1147 | DOI | MR

[45] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, 1967 | MR

[46] Quaas A., Sirakov B., “Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators”, Adv. Math., 218:1 (2008), 105–135 | DOI | MR | Zbl

[47] Sha J.-P., “$p$-convex Riemannian manifolds”, Invent. Math., 83 (1986), 437–447 | DOI | MR | Zbl

[48] Suzuki K., “The first boundary value and eigenvalue problems for degenerate elliptic equations”, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A, 4:1 (1968), 179–200 | DOI | MR | Zbl

[49] Wu H., “Manifolds of partially positive curvature”, Indiana Univ. Math. J., 36 (1987), 525–548 | DOI | MR | Zbl