Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2015_58_a5, author = {I. Capuzzo Dolcetta and F. Leoni and A. Vitolo}, title = {On some degenerate elliptic equations arising in geometric problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {96--110}, publisher = {mathdoc}, volume = {58}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/} }
TY - JOUR AU - I. Capuzzo Dolcetta AU - F. Leoni AU - A. Vitolo TI - On some degenerate elliptic equations arising in geometric problems JO - Contemporary Mathematics. Fundamental Directions PY - 2015 SP - 96 EP - 110 VL - 58 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/ LA - ru ID - CMFD_2015_58_a5 ER -
%0 Journal Article %A I. Capuzzo Dolcetta %A F. Leoni %A A. Vitolo %T On some degenerate elliptic equations arising in geometric problems %J Contemporary Mathematics. Fundamental Directions %D 2015 %P 96-110 %V 58 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/ %G ru %F CMFD_2015_58_a5
I. Capuzzo Dolcetta; F. Leoni; A. Vitolo. On some degenerate elliptic equations arising in geometric problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 96-110. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a5/
[1] Ambrosio L., Soner H. M., “Level set approach to mean curvature flow in arbitrary codimension”, J. Differ. Geom., 43 (1996), 693–737 | MR | Zbl
[2] Amendola M. E., Galise G., Vitolo A., “Riesz capacity, maximum principle and removable sets of fully nonlinear second order elliptic operators”, Differ. Integr. Equ., 26 (2013), 845–866 | MR | Zbl
[3] Amendola M. E., Galise G., Vitolo A., “On the uniqueness of blow-up solutions of fully nonlinear elliptic equations”, Discrete Contin. Dyn. Syst., 2013, Suppl. (2013), 771–780 | Zbl
[4] Armstrong S. N., “Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations”, J. Differ. Equ., 246:7 (2009), 2958–2987 | DOI | MR | Zbl
[5] Bao J., Ji X., “Necessary and sufficient conditions on solvability for Hessian inequalities”, Proc. Am. Math. Soc., 138 (2010), 175–188 | DOI | MR | Zbl
[6] Bao J., Ji X., “Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations”, J. Differ. Equ., 253 (2012), 2140–2160 | DOI | MR | Zbl
[7] Barles G., Burdeau J., “The Dirichlet problem for semilinear second-order degenerate elliptic equatiions and applications to stochastic exit time control problems”, Commun. Part. Differ. Equ., 20:1–2 (1995), 129–178 | DOI | MR | Zbl
[8] Berestycki H., Capuzzo Dolcetta I., Porretta A., Rossi L., “Maximum principle and generalized principal eigenvalue for degenerate elliptic operators”, J. Math. Pures Appl., 103:5 (2015), 1276–1293 | DOI | MR | Zbl
[9] Berestycki H., Nirenberg L., Varadhan S. R. S., “The principal eigenvalue and maximum principle for second-order elliptic operators in general domains”, Commun. Pure Appl. Math., 47:1 (1994), 47–92 | DOI | MR | Zbl
[10] Berestycki H., Rossi L., “Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains”, Commun. Pure Appl. Math., 68:6 (2015), 1014–1065 | DOI | MR | Zbl
[11] Birindelli I., Demengel F., “First eigenvalue and Maximum principle for fully nonlinear singular operators”, Adv. Differ. Equ., 11:1 (2006), 91–119 | MR | Zbl
[12] Birindelli I., Demengel F., “Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators”, Commun. Pure Appl. Anal., 6:2 (2007), 335–366 | DOI | MR | Zbl
[13] Boccardo L., Gallouet T., Vazquez J. L., “Nonlinear elliptic equations in $\mathbb R^N$ without growth restriction on the data”, J. Differ. Equ., 105:2 (1993), 334–363 | DOI | MR | Zbl
[14] Boccardo L., Gallouet T., Vazquez J. L., “Solutions of nonlinear parabolic equations without growth restrictions on the data”, Electron. J. Differ. Equ., 2001:60 (2001), 1–20 | MR
[15] Brezis H., “Semilinear equations in $\mathbb R^n$ without conditions at infinity”, Appl. Math. Optim., 12 (1984), 271–282 | DOI | MR | Zbl
[16] Caffarelli L. A., Cabré X., Fully nonlinear elliptic equations, Am. Math. Soc., Providence, 1995 | MR | Zbl
[17] Caffarelli L. A., Li Y. Y., Nirenberg L., “Some remarks on singular solutions of nonlinear elliptic equations. III: Viscosity solutions, including parabolic operators”, Commun. Pure Appl. Math., 66 (2013), 109–143 | DOI | MR | Zbl
[18] Cannarsa P., Da Prato G., Frankowska H., “Invariant measures associated to degenerate elliptic operators”, Indiana Univ. Math. J., 59:1 (2010), 53–78 | DOI | MR | Zbl
[19] Capuzzo Dolcetta I., Leoni F., Vitolo A., “Entire subsolutions of fully nonlinear degenerate elliptic equations”, Bull. Inst. Math. Acad. Sin. (N.S.), 9 (2014), 147–161 | MR | Zbl
[20] Capuzzo Dolcetta I., Leoni F., Vitolo A., On the inequality $F(x,D^2u) \geq f(u)+g(u)|Du|^q$, 2014, arXiv: 1501.06836[math.AP]
[21] Crandall M. G., Ishii H., Lions P. L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Am. Math. Soc. (N.S.), 27:1 (1992), 1–67 | DOI | MR | Zbl
[22] D'Ambrosio L., Mitidieri E., “A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities”, Adv. Math., 224 (2010), 967–1020 | DOI | MR | Zbl
[23] Diaz G., “A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller–Osserman condition”, Math. Ann., 353 (2012), 145–159 | DOI | MR | Zbl
[24] Esteban M. J., Felmer P. L., Quaas A., “Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data”, Proc. Edinb. Math. Soc. (2), 53:1 (2010), 125–141 | DOI | MR | Zbl
[25] Fichera G., “Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine”, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. (8), 5 (1956), 1–30 | MR
[26] Franchi B., Lanconelli E., “Une métrique associée à une classe d'opérateurs elliptiques dégénérés”, Proc. Conf. on Linear partial and pseudodifferential operators (Torino, 1982), Rend. Semin. Mat. Univ. Politec. Torino, 1983, 105–114 | MR | Zbl
[27] Friedman A., Pinsky M. A., “Asymptotic stability and spiraling properties for solutions of stochastic equations”, Trans. Am. Math. Soc., 186 (1973), 331–358 | DOI | MR
[28] Galise G., Vitolo A., “Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity”, Int. J. Differ. Equ., 2011 (2011), 453727 | MR | Zbl
[29] Giga Y., Surface evolution equations. A level set approach, Birkhäuser, Basel, 2006 | MR | Zbl
[30] Harvey F. R., Lawson H. B. (Jr.), “Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry”, Surveys in Differential Geometry, 18, International Press, Somerville, 2013, 102–156 | DOI | MR
[31] Harvey F. R., Lawson H. B. (Jr.), “Removable singularities for nonlinear subequations”, Indiana Univ. Math. J., 63 (2014), 1525–1552 | DOI | MR | Zbl
[32] Harvey F. R., Lawson H. B. (Jr.), Characterizing the strong maximum principle, 2014, arXiv: 1309.1738
[33] Hayman N. K., Kennedy P. B., Subharmonic functions, v. I, Academic Press, London, 1976 | Zbl
[34] Ikoma N., Ishii H., “Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 783–812 | DOI | MR | Zbl
[35] Ishii H., “Perron's method for Hamilton–Jacobi equations”, Duke Math. J., 55:2 (1987), 369–384 | DOI | MR | Zbl
[36] Jin Q., Li Y. Y., Xu H., “Nonexistence of positive solutions for some fully nonlinear elliptic equations”, Methods Appl. Anal., 12 (2005), 441–449 | MR | Zbl
[37] Keller J. B., “On solutions of $\Delta u=f(u)$”, Commun. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl
[38] Landkof N. S., Foundations of modern potential theory, Springer, Heidelberg–New York, 1972 | MR | Zbl
[39] Leoni F., “Nonlinear elliptic equations in $\mathbb R^N$ with absorbing zero order terms”, Adv. Differ. Equ., 5 (2000), 681–722 | MR | Zbl
[40] Leoni F., Pellacci B., “Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data”, J. Evol. Equ., 6 (2006), 113–144 | DOI | MR | Zbl
[41] Lions P. L., “Bifurcation and optimal stochastic control”, Nonlinear Anal., 7:2 (1983), 177–207 | DOI | MR
[42] Oberman A., Silvestre L., “The Dirichlet problem for the convex envelope”, Trans. Am. Math. Soc., 363:11 (2011), 5871–5886 | DOI | MR | Zbl
[43] Oleĭnik O. A., Radkevič E. V., Second order equations with nonnegative characteristic form, Plenum Press, New York, 1973 | MR
[44] Osserman R., “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7 (1957), 1141–1147 | DOI | MR
[45] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, 1967 | MR
[46] Quaas A., Sirakov B., “Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators”, Adv. Math., 218:1 (2008), 105–135 | DOI | MR | Zbl
[47] Sha J.-P., “$p$-convex Riemannian manifolds”, Invent. Math., 83 (1986), 437–447 | DOI | MR | Zbl
[48] Suzuki K., “The first boundary value and eigenvalue problems for degenerate elliptic equations”, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A, 4:1 (1968), 179–200 | DOI | MR | Zbl
[49] Wu H., “Manifolds of partially positive curvature”, Indiana Univ. Math. J., 36 (1987), 525–548 | DOI | MR | Zbl