Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 22-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in Hilbert spaces and provide a spectral analysis of operator functions that are symbols of the specified equations. These equations represent an abstract form of linear partial integrodifferential equations arising in viscoelasticity theory and other important applications. For the said integrodifferential equations, we obtain well-posedness results in weighted Sobolev spaces of vector functions defined on the positive semiaxis and valued in a Hilbert space. For the symbols of the said equations, we find the localization and the structure of the spectrum.
@article{CMFD_2015_58_a1,
     author = {V. V. Vlasov and N. A. Rautian},
     title = {Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {22--42},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a1/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - N. A. Rautian
TI  - Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 22
EP  - 42
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a1/
LA  - ru
ID  - CMFD_2015_58_a1
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A N. A. Rautian
%T Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 22-42
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a1/
%G ru
%F CMFD_2015_58_a1
V. V. Vlasov; N. A. Rautian. Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 22-42. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a1/

[1] Vlasov V. V., “O razreshimosti i svoistvakh reshenii funktsionalno-differentsialnykh uravnenii v gilbertovom prostranstve”, Mat. sb., 186:8 (1995), 67–92 | MR | Zbl

[2] Vlasov V. V., “O razreshimosti i otsenkakh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh”, Tr. MIAN, 227, 1999, 109–121 | MR | Zbl

[3] Vlasov V. V., “O korrektnoi razreshimosti abstraktnykh parabolicheskikh uravnenii s posledeistviem”, Dokl. RAN, 415:2 (2007), 151–152 | MR

[4] Vlasov V. V., Vu Dzh., Kabirova G. R., “Korrektnaya razreshimost i spektralnye svoistva abstraktnykh giperbolicheskikh uravnenii s posledeistviem”, Sovrem. mat. Fundam. napravl., 35, 2010, 44–59 | MR | Zbl

[5] Vlasov V. V., Gavrikov A. A., Ivanov S. A., Knyazkov D. Yu., Samarin V. A., Shamaev A. S., “Spektralnye svoistva kombinirovannykh sred”, Sovrem. probl. mat. i mekh., 5:1 (2009), 134–155

[6] Vlasov V. V., Medvedev D. A., “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i svyazannye s nimi voprosy spektralnoi teorii”, Sovrem. mat. Fundam. napravl., 30, 2008, 3–173 | MR

[7] Vlasov V. V., Medvedev D. A., Rautian N. A., Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i ikh spektralnyi analiz, Sovrem. probl. mat. i mekh., 8, 2011

[8] Vlasov V. V., Rautian N. A., “Korrektnaya razreshimost i spektralnyi analiz abstraktnykh giperbolicheskikh integrodifferentsialnykh uravnenii”, Tr. sem. im. I. G. Petrovskogo, 28, 2011, 75–113 | MR | Zbl

[9] Vlasov V. V., Rautian N. A., Shamaev A. S., “Razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Dokl. RAN, 434:1 (2010), 12–15 | MR | Zbl

[10] Vlasov V. V., Rautian N. A., Shamaev A. S., “Spektralnyi analiz i korrektnaya razreshimost abstraktnykh integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Sovrem. mat. Fundam. napravl., 39, 2011, 36–65 | MR

[11] Vlasov V. V., Shmatov K. I., “Korrektnaya razreshimost uravnenii giperbolicheskogo tipa s zapazdyvaniem v gilbertovom prostranstve”, Tr. MIAN, 243, 2003, 127–137 | MR | Zbl

[12] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[13] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl

[14] Zhikov V. V., “O dvukhmasshtabnoi skhodimosti”, Tr. sem. im. I. G. Petrovskogo, 23, 2003, 149–187 | MR | Zbl

[15] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR

[16] Lions Zh. P., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, M., 1971

[17] Lykov A. V., Problema teplo- i massoobmena, Nauka i tekhnika, Minsk, 1976

[18] Miloslavskii A. I., Spektralnye svoistva operatornogo puchka, voznikayuschego v vyazkouprugosti, Dep. v Ukr. NIINTI 13.07.1987. No 1229-UK87

[19] Palin V. V., Radkevich E. V., “Zakony sokhraneniya i ikh giperbolicheskie regulyarizatsii”, Sovrem. probl. mat. i mekh., 5:1 (2009), 88–115 | MR

[20] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977 | MR

[21] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[22] Shamaev A. S., Shumilova V. V., “Usrednenie uravnenii akustiki dlya vyazkouprugogo materiala s kanalami, zapolnennymi vyazkoi szhimaemoi zhidkostyu”, Izv. RAN. Ser. Mekh. zhidk. i gaza, 2011, no. 2, 92–103 | Zbl

[23] Shkalikov A. A., “Silno dempfirovannye puchki operatorov i razreshimost sootvetstvuyuschikh operatorno-differentsialnykh uravnenii”, Mat. sb., 135(177):1 (1988), 96–118 | MR | Zbl

[24] Shkalikov A. A., “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, jour Tr. sem. im. I. G. Petrovskogo, 14, 1989, 140–224 | Zbl

[25] Di Blasio G., “Parabolic Volterra equations of convolution type”, J. Integral Equ. Appl., 6 (1994), 479–508 | DOI | MR | Zbl

[26] Di Blasio G., Kunisch K., Sinestari E., “$L^2$-regularity for parabolic partial integrodifferential equations with delays in the highest order derivatives”, J. Math. Anal. Appl., 102 (1984), 38–57 | DOI | MR | Zbl

[27] Di Blasio G., Kunisch K., Sinestari E., “Stability for abstract linear functional differential equations”, Israel J. Math., 50:3 (1985), 231–263 | DOI | MR | Zbl

[28] Desch W., Miller R. K., “Exponential stabilization of Volterra integrodifferential equations in Hilbert space”, J. Differ. Equ., 70 (1987), 366–389 | DOI | MR | Zbl

[29] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Ration. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[30] Ivanov S., Pandolfi L., “Heat equations with memory: lack of controllability to the rest”, J. Math. Anal. Appl., 355 (2009), 1–11 | DOI | MR | Zbl

[31] Kato T., Perturbation theory for linear operators, Springer, N.Y., 1966 | MR | Zbl

[32] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonself-adjoint problems for viscous fluids, Birkhäuser, Basel, 2003 | MR | Zbl

[33] Kunisch K., Mastinsek M., “Dual semigroups and structual operators for partial differential equations with unbounded operators acting on the delays”, Differ. Integral Equ., 3:4 (1990), 733–756 | MR | Zbl

[34] Medvedev D. A., Vlasov V. V., Wu J., “Solvability and structural properties of abstract neutral functional differential equations”, Funct. Differ. Equ., 66:3–4 (2008), 249–272 | MR

[35] Miller R. K., “Volterra integral equation in Banach space”, Funkcialaj Ekvac., 18 (1975), 163–194 | MR

[36] Miller R. K., “An integrodifferential equation for rigid heat conductors with memory”, J. Math. Anal. Appl., 66 (1978), 313–332 | DOI | MR | Zbl

[37] Miller R. K., Wheeler R. L., “Well-posedness and stability of linear Volterra interodifferential equations in abstract spaces”, Funkcialaj Ekvac., 21 (1978), 279–305 | MR | Zbl

[38] Pandolfi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR | Zbl

[39] Vlasov V. V., Rautian N. A., “Correct solvability of integro-differential equations arising in the theory of viscoelastisity”, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan, 40 (2014), 407–417 | MR

[40] Vlasov V. V., Wu J., “Solvability and spectral analysis of abstract hyperbolic equations with delay”, J. Funct. Differ. Equ., 16:4 (2009), 751–768 | MR | Zbl

[41] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Differ. Integral Equ., 4:6 (1991), 1325–1351 | MR | Zbl

[42] Wu J., Theory and applications of partial functional differential equations, Springer, New York, 1996 | MR | Zbl