Operator approach to the ilyushin model for a~viscoelastic body of parabolic type
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 31-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of small movements of a viscoelastic body of parabolic type is studied in the paper. The unique strong solvability of the corresponding initial-boundary value problem is proved. The spectrum and the properties of root elements of the emerging operator block are studied. More precisely, the theorem about both the essential and the discrete spectrum of the main operator block is proved. The asymptotic formula for the series of eigenvalues condensing at infinity is found. Completeness and the basis property of the system of root elements of the main operator are established. Presentations for a solution of the original second-order integrodifferential equation are found both in the form of contour integrals and expansions in the system of eigenvectors of some operator pencil. A certain statement concerning stabilization of solutions to the evolution problem is proved. In the last section, the case of a synchronously isotropic medium of parabolic type is studied as a particular case of the model considered.
@article{CMFD_2015_57_a1,
     author = {D. A. Zakora},
     title = {Operator approach to the ilyushin model for a~viscoelastic body of parabolic type},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {31--64},
     publisher = {mathdoc},
     volume = {57},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_57_a1/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Operator approach to the ilyushin model for a~viscoelastic body of parabolic type
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 31
EP  - 64
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_57_a1/
LA  - ru
ID  - CMFD_2015_57_a1
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Operator approach to the ilyushin model for a~viscoelastic body of parabolic type
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 31-64
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_57_a1/
%G ru
%F CMFD_2015_57_a1
D. A. Zakora. Operator approach to the ilyushin model for a~viscoelastic body of parabolic type. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 31-64. http://geodesic.mathdoc.fr/item/CMFD_2015_57_a1/

[1] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[2] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhn. Mat. analiz, 14, 1977, 5–58 | MR | Zbl

[3] Vlasov V. V., Medvedev D. A., “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i svyazannye s nimi voprosy spektralnoi teorii”, Sovrem. mat. Fundam. napravl., 30, 2008, 3–173 | MR

[4] Vlasov V. V., Rautian N. A., Shamaev A. S., “Spektralnyi analiz i korrektnaya razreshimost abstraktnykh integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Sovrem. mat. Fundam. napravl., 39, 2011, 36–65 | MR

[5] Volevich L. R., “Razreshimost kraevykh zadach dlya obschikh ellipticheskikh sistem”, Mat. sb., 68(110):3 (1965), 373–416 | MR | Zbl

[6] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vischa shkola, Kiev, 1989 | MR

[7] Grinshtein V. A., “Bazisnost chasti sistemy sobstvennykh vektorov golomorfnoi operator-funktsii”, Mat. zametki, 50:1 (1991), 142–144 | MR | Zbl

[8] Zakora D. A., “Operatornyi podkhod k modelyam Ilyushina vyazkouprugikh sred pri izotermicheskikh protsessakh deformirovaniya”, Ukr. mat. vestn., 10:3 (2013), 412–432

[9] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazko-uprugosti, Nauka, M., 1970 | MR

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[11] Kozhevnikov A. N., Funktsionalnye metody matematicheskoi fiziki, Uchebnoe posobie, MAI, M., 1991

[12] Kosmodemyanskii D. A., Shamaev A. S., “O nekotorykh spektralnykh zadachakh v poristykh sredakh, nasyschennykh zhidkostyu”, Sovrem. mat. Fundam. napravl., 17, 2006, 88–109 | MR

[13] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[14] Larionov G. S., “Issledovanie kolebanii relaksiruyuschikh sistem metodom usredneniya”, Mekhanika polimerov, 1969, no. 5, 806–813

[15] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR

[16] Markus A. S., Matsaev V. I., “Teorema o sravnenii spektrov i spektralnaya asimptotika dlya puchka M. V. Keldysha”, Mat. sb., 123(165):3 (1984), 391–406 | MR | Zbl

[17] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR

[18] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Duglisa i L. Nirenberga. II”, Tr. Matem. in-ta im. V. A. Steklova, 92, 1966, 233–297 | MR | Zbl

[19] Grubb G., Geymonat G., “The essential spectrum of elliptic systems of mixed order”, Math. Ann., 227 (1977), 247–276 | DOI | MR | Zbl

[20] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-adjoint Problems of an Ideal Fluid, Birkhäuser, Basel–Boston–Berlin, 2001 ; Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR | Zbl | MR | Zbl

[21] Kozhevnikov A., Skubachevskaya T., “Some applications of pseudo-differential operators to elasticity”, Hokkaido Math. J., 26 (1997), 297–322 | DOI | MR | Zbl

[22] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, N.Y., 1983 | MR | Zbl

[23] Prüss J., Evolutionary integral equations and applications, Birkhäuser, Switzerland, 1993 | MR | Zbl