Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 129-144

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of stabilization of an $n$-link inverted pendulum on a movable base (cart). A cart is allowed to move along the horizontal axis. A force applied to the cart is considered as a control. The problem is to minimize the mean square deviation of the pendulum from the vertical line. For the linearized model, we show that, for small deviations from the upper unstable equilibrium position, the optimal regime contains trajectories with more and more frequent switchings. Namely, the optimal trajectories with infinite number of switchings are shown to attain, in finite time, the singular surface and then continue these motion with singular control over the singular surface, approaching the origin in an infinite time. It is shown that the costructed solutions are globally optimal.
@article{CMFD_2015_56_a1,
     author = {L. A. Manita and M. I. Ronzhina},
     title = {Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {56},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/}
}
TY  - JOUR
AU  - L. A. Manita
AU  - M. I. Ronzhina
TI  - Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 129
EP  - 144
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/
LA  - ru
ID  - CMFD_2015_56_a1
ER  - 
%0 Journal Article
%A L. A. Manita
%A M. I. Ronzhina
%T Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 129-144
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/
%G ru
%F CMFD_2015_56_a1
L. A. Manita; M. I. Ronzhina. Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 129-144. http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/