Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 129-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of stabilization of an $n$-link inverted pendulum on a movable base (cart). A cart is allowed to move along the horizontal axis. A force applied to the cart is considered as a control. The problem is to minimize the mean square deviation of the pendulum from the vertical line. For the linearized model, we show that, for small deviations from the upper unstable equilibrium position, the optimal regime contains trajectories with more and more frequent switchings. Namely, the optimal trajectories with infinite number of switchings are shown to attain, in finite time, the singular surface and then continue these motion with singular control over the singular surface, approaching the origin in an infinite time. It is shown that the costructed solutions are globally optimal.
@article{CMFD_2015_56_a1,
     author = {L. A. Manita and M. I. Ronzhina},
     title = {Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {56},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/}
}
TY  - JOUR
AU  - L. A. Manita
AU  - M. I. Ronzhina
TI  - Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 129
EP  - 144
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/
LA  - ru
ID  - CMFD_2015_56_a1
ER  - 
%0 Journal Article
%A L. A. Manita
%A M. I. Ronzhina
%T Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 129-144
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/
%G ru
%F CMFD_2015_56_a1
L. A. Manita; M. I. Ronzhina. Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 129-144. http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/

[1] Avreitsevich Ya., Vasilevskii G., Kudra G., Reshmin S. A., “Eksperiment po raskachivaniyu dvoinogo mayatnika upravleniem s obratnoi svyazyu”, Izv. RAN. Ser. Teor. i sist. upravl., 2012, no. 2, 10–16 | MR

[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[3] Borisov V. F., Zelikin M. I., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR | Zbl

[4] Borisov V. F., Zelikin M. I., Manita L. A., “Optimalnyi sintez v beskonechnomernom prostranstve. Differentsialnye uravneniya i topologiya. II”, Tr. MIAN, 271, 2010, 40–58 | MR | Zbl

[5] Borshevskii M. Z., Ioslovich I. V., “K zadache optimalnogo po bystrodeistviyu tormozheniya osesimmetrichnogo tverdogo tela okolo tsentra mass”, Prikl. mat. mekh., 49:1 (1985), 35–42

[6] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR

[7] Zelikin M. I., Borisov V. F., “Osobye optimalnye rezhimy v zadachakh matematicheskoi ekonomiki”, Sovr. mat. i ee prilozh., 11 (2003), 3–161 | MR | Zbl

[8] Kapitsa P. L., “Mayatnik s vibriruyuschim podvesom”, Usp. fiz. nauk, 44:5 (1951), 7–20

[9] Lokutsievskii L. V., “Gamiltonovost potoka osobykh traektorii”, Mat. sb., 205:3 (2014), 133–160 | DOI | MR | Zbl

[10] Manita L. A., “Optimalnyi osobyi rezhim i rezhim s uchaschayuschimisya pereklyucheniyami v zadache upravleniya kolebaniyami struny s zakreplennymi kontsami”, Prikl. mat. mekh., 74:5 (2010), 873–880 | MR

[11] Martynenko Yu. G., Formalskii A. M., “Upravlyaemyi mayatnik na podvizhnom osnovanii”, Izv. RAN. Ser. Mekh. tv. tela, 2013, no. 1, 9–23 | MR

[12] Mikhalev A. A., Mikhalev A. V., Nachala algebry, Ch. I, M., 2009

[13] Osipov S. N., Formalskii A. M., “Zadacha o bystreishem povorote manipulyatora”, Prikl. mat. mekh., 52:6 (1988), 929–933 | MR

[14] Reshmin S. A., Chernousko F. L., “Optimalnoe po bystrodeistviyu upravlenie perevernutym mayatnikom v forme sinteza”, Izv. RAN. Ser. Teor. sist. upravl., 2006, no. 3, 51–62 | MR | Zbl

[15] Formalskii A. M., “O stabilizatsii dvoinogo perevernutogo mayatnika pri pomoschi odnogo upravlyayuschego momenta”, Izv. RAN. Ser. Teor. sist. uprav., 2006, no. 3, 5–12 | MR | Zbl

[16] Formalskii A. M., “O globalnoi stabilizatsii dvoinogo perevernutogo mayatnika s upravleniem v mezhzvennom sharnire”, Izv. RAN. Ser. Mekh. tv. tela, 2008, no. 5, 3–14

[17] Cherkasov O. Yu., Yakushev A. G., “Singular arcs in the optimal evasion against a proportional navigation vehicle”, J. Optim. Theory Appl., 113:2 (2002), 211–226 | MR | Zbl

[18] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in optimization, Acad. Press, N.Y., 1967, 63–103 | MR

[19] Zelikin M. I., Borisov V. F., Theory of chattering control with applications to astronautics, robotics, economics and engineering, Birkhäuser, Boston–Basel–Berlin, 1994 | MR | Zbl