Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2015_56_a1, author = {L. A. Manita and M. I. Ronzhina}, title = {Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {129--144}, publisher = {mathdoc}, volume = {56}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/} }
TY - JOUR AU - L. A. Manita AU - M. I. Ronzhina TI - Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base JO - Contemporary Mathematics. Fundamental Directions PY - 2015 SP - 129 EP - 144 VL - 56 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/ LA - ru ID - CMFD_2015_56_a1 ER -
%0 Journal Article %A L. A. Manita %A M. I. Ronzhina %T Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base %J Contemporary Mathematics. Fundamental Directions %D 2015 %P 129-144 %V 56 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/ %G ru %F CMFD_2015_56_a1
L. A. Manita; M. I. Ronzhina. Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 129-144. http://geodesic.mathdoc.fr/item/CMFD_2015_56_a1/
[1] Avreitsevich Ya., Vasilevskii G., Kudra G., Reshmin S. A., “Eksperiment po raskachivaniyu dvoinogo mayatnika upravleniem s obratnoi svyazyu”, Izv. RAN. Ser. Teor. i sist. upravl., 2012, no. 2, 10–16 | MR
[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR
[3] Borisov V. F., Zelikin M. I., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR | Zbl
[4] Borisov V. F., Zelikin M. I., Manita L. A., “Optimalnyi sintez v beskonechnomernom prostranstve. Differentsialnye uravneniya i topologiya. II”, Tr. MIAN, 271, 2010, 40–58 | MR | Zbl
[5] Borshevskii M. Z., Ioslovich I. V., “K zadache optimalnogo po bystrodeistviyu tormozheniya osesimmetrichnogo tverdogo tela okolo tsentra mass”, Prikl. mat. mekh., 49:1 (1985), 35–42
[6] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR
[7] Zelikin M. I., Borisov V. F., “Osobye optimalnye rezhimy v zadachakh matematicheskoi ekonomiki”, Sovr. mat. i ee prilozh., 11 (2003), 3–161 | MR | Zbl
[8] Kapitsa P. L., “Mayatnik s vibriruyuschim podvesom”, Usp. fiz. nauk, 44:5 (1951), 7–20
[9] Lokutsievskii L. V., “Gamiltonovost potoka osobykh traektorii”, Mat. sb., 205:3 (2014), 133–160 | DOI | MR | Zbl
[10] Manita L. A., “Optimalnyi osobyi rezhim i rezhim s uchaschayuschimisya pereklyucheniyami v zadache upravleniya kolebaniyami struny s zakreplennymi kontsami”, Prikl. mat. mekh., 74:5 (2010), 873–880 | MR
[11] Martynenko Yu. G., Formalskii A. M., “Upravlyaemyi mayatnik na podvizhnom osnovanii”, Izv. RAN. Ser. Mekh. tv. tela, 2013, no. 1, 9–23 | MR
[12] Mikhalev A. A., Mikhalev A. V., Nachala algebry, Ch. I, M., 2009
[13] Osipov S. N., Formalskii A. M., “Zadacha o bystreishem povorote manipulyatora”, Prikl. mat. mekh., 52:6 (1988), 929–933 | MR
[14] Reshmin S. A., Chernousko F. L., “Optimalnoe po bystrodeistviyu upravlenie perevernutym mayatnikom v forme sinteza”, Izv. RAN. Ser. Teor. sist. upravl., 2006, no. 3, 51–62 | MR | Zbl
[15] Formalskii A. M., “O stabilizatsii dvoinogo perevernutogo mayatnika pri pomoschi odnogo upravlyayuschego momenta”, Izv. RAN. Ser. Teor. sist. uprav., 2006, no. 3, 5–12 | MR | Zbl
[16] Formalskii A. M., “O globalnoi stabilizatsii dvoinogo perevernutogo mayatnika s upravleniem v mezhzvennom sharnire”, Izv. RAN. Ser. Mekh. tv. tela, 2008, no. 5, 3–14
[17] Cherkasov O. Yu., Yakushev A. G., “Singular arcs in the optimal evasion against a proportional navigation vehicle”, J. Optim. Theory Appl., 113:2 (2002), 211–226 | MR | Zbl
[18] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in optimization, Acad. Press, N.Y., 1967, 63–103 | MR
[19] Zelikin M. I., Borisov V. F., Theory of chattering control with applications to astronautics, robotics, economics and engineering, Birkhäuser, Boston–Basel–Berlin, 1994 | MR | Zbl