Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 5-128

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider linear-quadratic deterministic optimal control problems where the controls take values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in a finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely, the chaotic behavior of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighborhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us a possibility of calculating the entropy and the Hausdorff dimension of the nonwandering set, which appears to have a Cantor-like structure as in Smale's horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behavior is generic for piecewise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.
@article{CMFD_2015_56_a0,
     author = {M. I. Zelikin and L. V. Lokutsievskii and R. Hildebrand},
     title = {Typicality of chaotic fractal behavior of integral vortices in {Hamiltonian} systems with discontinuous right hand side},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--128},
     publisher = {mathdoc},
     volume = {56},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - L. V. Lokutsievskii
AU  - R. Hildebrand
TI  - Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 5
EP  - 128
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/
LA  - ru
ID  - CMFD_2015_56_a0
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A L. V. Lokutsievskii
%A R. Hildebrand
%T Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 5-128
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/
%G ru
%F CMFD_2015_56_a0
M. I. Zelikin; L. V. Lokutsievskii; R. Hildebrand. Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 5-128. http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/