Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2015_56_a0, author = {M. I. Zelikin and L. V. Lokutsievskii and R. Hildebrand}, title = {Typicality of chaotic fractal behavior of integral vortices in {Hamiltonian} systems with discontinuous right hand side}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--128}, publisher = {mathdoc}, volume = {56}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/} }
TY - JOUR AU - M. I. Zelikin AU - L. V. Lokutsievskii AU - R. Hildebrand TI - Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side JO - Contemporary Mathematics. Fundamental Directions PY - 2015 SP - 5 EP - 128 VL - 56 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/ LA - ru ID - CMFD_2015_56_a0 ER -
%0 Journal Article %A M. I. Zelikin %A L. V. Lokutsievskii %A R. Hildebrand %T Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side %J Contemporary Mathematics. Fundamental Directions %D 2015 %P 5-128 %V 56 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/ %G ru %F CMFD_2015_56_a0
M. I. Zelikin; L. V. Lokutsievskii; R. Hildebrand. Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 56 (2015), pp. 5-128. http://geodesic.mathdoc.fr/item/CMFD_2015_56_a0/
[1] Agrachev A. A., Gamkrelidze R. V., “Printsip optimalnosti vtorogo poryadka dlya zadachi bystrodeistviya”, Mat. sb., 100(142):4(8) (1976), 610–643 | MR | Zbl
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 1989 | MR
[3] Dmitruk A. V., “Kvadratichnye usloviya pontryaginskogo minimuma v zadache optimalnogo upravleniya, lineinoi po upravleniyu. I. Teorema o rasshifrovke”, Izv. AN SSSR. Ser. mat., 50:2 (1986), 284–312 | MR | Zbl
[4] Dmitruk A. V., “Kvadratichnye dostatochnye usloviya minimalnosti anormalnykh subrimanovykh geodezicheskikh”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 65, 1999, 5–89 | MR | Zbl
[5] Zarisskii O., Samyuel P., Kommutativnaya algebra, v. 1, Izd-vo inostr. lit., M., 1963
[6] Zelikin M. I., Borisov V. F., “Osobye optimalnye rezhimy v zadachakh matematicheskoi ekonomiki”, Sovr. mat. prilozh., 11, 2003, 3–161 | MR | Zbl
[7] Zelikin M. I., Kiselev D. D., Lokutsievskii L. V., “Optimalnoe upravlenie i teoriya Galua”, Mat. sb., 204:11 (2013), 83–98 | DOI | MR | Zbl
[8] Zelikin M. I., Lokutsievskii L. V., Khildebrand R., “Geometriya okrestnostei osobykh ekstremalei v zadachakh s mnogomernym upravleniem”, Tr. MIAN, 277, 2012, 74–90 | MR | Zbl
[9] Zelikin M. I., Lokutsievskii L. V., Khildebrand R., “Stokhasticheskaya dinamika algebr Li skobok Puassona v okrestnosti tochki negladkosti gamiltoniana”, Dokl. RAN, 450:1 (2013), 1–6
[10] Zelikin M. I., Melnikov N. B., Khildebrand R., “Topologicheskaya struktura fazovogo portreta tipichnogo sloya optimalnogo sinteza dlya zadach s nakopleniem pereklyuchenii”, Tr. MIAN, 233, 2001, 125–152 | MR | Zbl
[11] Zelikina L. F., Zelikin M. I., Khlyustov K. V., “Osobye stratifitsirovannye mnogoobraziya dlya involyutivnykh upravlyaemykh sistem”, Diff. uravn., 37:9 (2001), 1161–1167 | MR | Zbl
[12] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[13] Lokutsievskii L. V., “Gamiltonovost potoka osobykh traektorii”, Mat. sb., 205:3 (2014), 133–160 | DOI | MR | Zbl
[14] Lokutsievskii L. V., “Osobye rezhimy v upravlyaemykh sistemakh s mnogomernym upravleniem iz mnogogrannika”, Izv. RAN. Ser. mat., 78:5 (2014), 167–190 | DOI | MR | Zbl
[15] Milyutin A. A., Ilyutovich A. E., Osmolovskii N. P., Chukanov S. V., Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993 | MR
[16] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl
[17] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[18] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[19] Falconer K., Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 2003 | MR | Zbl
[20] Fuller A. T., “Dimensional properties of optimal and sub-optimal nonlinear control systems”, J. Franklin Inst., 289 (1970), 379–393 | MR | Zbl
[21] Hildebrand R., Lokutsievskiy L. V., Zelikin M. I., “Generic fractal structure of finite parts of trajectories of piecewise smooth hamiltonian systems”, Russ. J. Math. Phys., 20:1 (2013), 25–32 | MR | Zbl
[22] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in Optimization, Academic Press, N.Y., 1967, 63–101 | MR
[23] Krener A. J., “The high order maximum principle and its application to singular extremals”, SIAM J. Control Optim., 15:2 (1977), 256–293 | MR | Zbl
[24] Kupka I., “Fuller's phenomena”, Progr. Systems Control Theory, Birkhäuser, Boston, 1990, 129–142 | MR
[25] Lewis R. M., “Defenitions of order and junction condition in singular control problems”, SIAM J. Control Optim., 18:1 (1980), 21–32 | MR | Zbl
[26] Lokutsievskiy L. V., “Generic structure of the lagrangian manifold in chattering problems”, Sb. Math., 205:3 (2014), 432–458 | DOI | MR | Zbl
[27] Lokutsievskii L. V., Zelikin M. I., Hildebrand R., “Fractal structure of hyperbolic Lipschitzian dynamical systems”, Russ. J. Math. Phys., 19:1 (2012), 27–44 | MR
[28] Marchal C., “Chattering arcs and chattering controls”, J. Optim. Theory Appl., 11:5 (1973), 441–468 | MR | Zbl
[29] McDannel J. P., Powers W. F., “Necessary conditions for joining optimal singular and non-singular subarcs”, SIAM J. Control Optim., 9 (1971), 161–173 | MR
[30] Zelikin M. I., Borisov V. F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl