Anti-compacts and their applications to analogs of Lyapunov and Lebesgue theorems in Frech\'et spaces
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 155-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce anti-compact sets (anti-compacts) in Frechét spaces. We thoroughly investigate the properties of anti-compacts and the scale of Banach spaces generated by anti-compacts. Special attention is paid to systems of anti-compact ellipsoids in Hilbert spaces. The existence of a system of anti-compacts is proved for any separable Frechét space $E$. Using the constructed theory, we obtain analogs of the Lyapunov theorem on the convexity and compactness of the range of vector measures in the class of separable Frechét spaces: We prove the convexity and compactness of the range of vector measure in a space $E_{\overline C}$ generated by an anti-compact $\overline C$. Also, the nondifferentiability problem with respect to the upper limit is investigated for the Pettis integral. We obtain differentiability conditions for the indefinite Pettis integrals in terms of the new weak integral boundedness and the $\sigma$-compact measurability. We prove an analog of the Lebesgue theorem on the differentiability of the indefinite Pettis integral for any strongly measurable integrand.
@article{CMFD_2014_53_a4,
     author = {F. S. Stonyakin},
     title = {Anti-compacts and their applications to analogs of {Lyapunov} and {Lebesgue} theorems in {Frech\'et} spaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {155--176},
     publisher = {mathdoc},
     volume = {53},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2014_53_a4/}
}
TY  - JOUR
AU  - F. S. Stonyakin
TI  - Anti-compacts and their applications to analogs of Lyapunov and Lebesgue theorems in Frech\'et spaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2014
SP  - 155
EP  - 176
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2014_53_a4/
LA  - ru
ID  - CMFD_2014_53_a4
ER  - 
%0 Journal Article
%A F. S. Stonyakin
%T Anti-compacts and their applications to analogs of Lyapunov and Lebesgue theorems in Frech\'et spaces
%J Contemporary Mathematics. Fundamental Directions
%D 2014
%P 155-176
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2014_53_a4/
%G ru
%F CMFD_2014_53_a4
F. S. Stonyakin. Anti-compacts and their applications to analogs of Lyapunov and Lebesgue theorems in Frech\'et spaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 155-176. http://geodesic.mathdoc.fr/item/CMFD_2014_53_a4/

[1] Arkin V. I., Levin V. L., “Vypuklost znachenii vektornykh integralov, teoremy izmerimogo vybora i variatsionnye zadachi”, Usp. mat. nauk, 27:3 (1972), 21–77 | MR | Zbl

[2] Brudno A. L., Teoriya funktsii deistvitelnogo peremennogo. Izbrannye glavy, Nauka, M., 1971 | MR

[3] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[4] Ioffe A. D., Tikhomirov V. M., “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, Usp. mat. nauk, 23:6 (1968), 51–116 | MR | Zbl

[5] Kadets V. M., Kurs funktsionalnogo analiza, KhNU im. V. N. Karazina, Kh., 2006 | MR

[6] Kutateladze S. S., “Teorema Lyapunova, zonoidy i beng-beng”, Aleksei Andreevich Lyapunov. 100 let so dnya rozhdeniya, Akad. izd-vo «Geo», Novosibirsk, 2011, 262–264

[7] Lyapunov A. A., “O vpolne additivnykh vektor–funktsiyakh”, Izv. AN SSSR. Ser. Mat., 4 (1940), 465–478

[8] Lyapunov A. N., “Teorema A. A. Lyapunova o vypuklosti znachenii mer”, Aleksei Andreevich Lyapunov. 100 let so dnya rozhdeniya, Akad. izd-vo «Geo», Novosibirsk, 2011, 257–261

[9] Orlov I. V., “Gilbertovy kompakty, kompaktnye ellipsoidy i kompaktnye ekstremumy”, Sovrem. mat. Fundam. napravl., 29 (2008), 165–175 | MR

[10] Orlov I. V., Stonyakin F. S., “Predelnaya forma svoistva Radona-Nikodima verna v proizvolnom prostranstve Freshe”, Sovrem. mat. Fundam. napravl., 37 (2010), 55–69 | MR

[11] Stonyakin F. S., “Kompaktnyi subdifferentsial veschestvennykh funktsii”, Dinam. sist., 23 (2007), 99–112 | Zbl

[12] Stonyakin F. S., “Sekventsialnyi podkhod k ponyatiyu kompaktnogo subdifferentsiala dlya otobrazhenii v metrizuemye LVP”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo. Ser. «Mat. Mekh. Inform. i kibern.», 21 (60):1 (2008), 41–53

[13] Stonyakin F. S., “K-svoistvo Radona-Nikodima dlya prostranstv Freshe”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V.I. Vernadskogo. Ser. «Mat. Mekh. Inform. i kibern.», 22 (61):1 (2009), 102–113 | MR

[14] Stonyakin F. S., “Analog teoremy Danzhua-Yung-Saksa o kontingentsii dlya otobrazhenii v prostranstva Freshe i odno ego prilozhenie v teorii vektornogo integrirovaniya”, Tr. IPMM NAN Ukrainy, 20 (2010), 168–176 | MR | Zbl

[15] Stonyakin F. S., “Silnye kompaktnye kharakteristiki i predelnaya forma svoistva Radona-Nikodima dlya vektornykh zaryadov so znacheniyami v prostranstvakh Freshe”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo. Ser. «Fiz.-mat. nauki», 23 (62):1 (2010), 131–149 | MR

[16] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M, 1962

[17] Edvards E., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[18] Cascales B., Kadets V., Rodriguez J., “Measurable selectors and set-valued Pettis integral in non-separable Banach spaces”, J. Funct. Anal., 256:3 (2009), 673–699 | DOI | MR | Zbl

[19] Chen Y., Lai J., Parkes D. C., Procaccia A. D., “Truth, justice, and cake cutting”, Games Econom. Behav., 77:1 (2013), 284–297 | DOI | MR | Zbl

[20] Dai P., Feinberg E. A., Extension of Lyapunov's convexity theorem to subranges, 2011, arXiv: 1102.2534v1 [math.PR] | MR

[21] Diestel J., Uhl J. J., Vector measures, Am. Math. Soc., Providence, 1977 | MR

[22] Dilworth S. J., Girardi M., “Nowhere weak differentiability of the Pettis integral”, Quaest. Math., 18:4 (1995), 365–380 | DOI | MR | Zbl

[23] Kadets V. M., Shumyatskiy B., Shvidkoy R., Tseytlin L., Zheltukhin K., “Some remarks on vector-valued integration”, Math. Phys. Anal. Geom., 9 (2002), 48–65 | MR | Zbl

[24] Maccheroni F., Marinacci M., “How to cut a pizza fairly: fair division with decreasing marginal evaluations”, Soc. Choice Welf., 20:3 (2003), 457–465 | DOI | MR | Zbl

[25] Marrafa V., “The variational McShane integral in locconvex spaces”, Rocky Mountain J. Math., 39:6 (2009), 1993–2013 | DOI | MR

[26] Moedomo S., Uhl J. J., “Radon-Nikodym theorems for the Bochner and Pettis integrals”, Pacific J. Math, 38:2 (1971), 531–536 | DOI | MR | Zbl

[27] Mossel E., Tamuz O., Truthful fair division, 2010, arXiv: 1003.5480v2 [cs.GT] | MR

[28] Naralenkov K. M., “On Denjoy type extensions of the Pettis integral”, Czechoslovak Math. J., 60:3 (2010), 737–750 | DOI | MR | Zbl

[29] Naralenkov K. M., “On continuity and compactness of some vector-valued integrals”, Rocky Mountain J. Math., 43:3 (2013), 1015–1022 | DOI | MR | Zbl

[30] Neyman J., “Un thèorém d'existence”, C. R. Math. Acad. Sci. Paris, 222 (1946), 843–845 | MR | Zbl

[31] Orlov I. V., Stonyakin F. S., “Strong compact properties of the mappings and K-property of Radon-Nikodym”, Methods Funct. Anal. Topology, 16:2 (2010), 183–196 | MR | Zbl

[32] Yoon J. H., Park J. M., Kim Y. K., Kim B. M., “The AP-Henstok extension of the Dunford and Pettis integral”, J. Chungcheong Math. Soc., 23:4 (2010), 879–884