Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 5-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate two insurance mathematical models of the following behavior of an insurance company in the insurance market: the company invests a constant part of the capital in a risk asset (shares) and invests the remaining part in a risk-free asset (a bank account). Changing parameters (characteristics of shares), this strategy is reduced to the case where all the capital is invested in a risk asset. The first model is based on the classical Cramér–Lundberg risk process for the exponential distribution of values of insurance demands (claims). The second one is based on a modification of the classical risk process (the so-called stochastic premium risk process) where both demand values and insurance premium values are assumed to be exponentially distributed. For the infinite-time nonruin probability of an insurance company as a function of its initial capital, singular problems for linear second-order integrodifferential equations arise. These equations are defined on a semiinfinite interval and they have nonintegrable singularities at the origin and at infinity. The first model yields a singular initial-value problem for integrodifferential equations with a Volterra integral operator with constraints. The second one yields more complicated problem for integrodifferential equations with a non-Volterra integral operator with constraints and a nonlocal condition at the origin. We reduce the problems for integrodifferential equations to equivalent singular problems for ordinary differential equations, provide existence and uniqueness theorems for the solutions, describe their properties and long-time behavior, and provide asymptotic representation of solutions in neighborhoods of singular points. We propose efficient algorithms to find numerical solutions and provide the computational results and their economics interpretation.
@article{CMFD_2014_53_a0,
     author = {T. A. Belkina and N. B. Konyukhova and S. V. Kurochkin},
     title = {Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--29},
     publisher = {mathdoc},
     volume = {53},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/}
}
TY  - JOUR
AU  - T. A. Belkina
AU  - N. B. Konyukhova
AU  - S. V. Kurochkin
TI  - Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2014
SP  - 5
EP  - 29
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/
LA  - ru
ID  - CMFD_2014_53_a0
ER  - 
%0 Journal Article
%A T. A. Belkina
%A N. B. Konyukhova
%A S. V. Kurochkin
%T Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments
%J Contemporary Mathematics. Fundamental Directions
%D 2014
%P 5-29
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/
%G ru
%F CMFD_2014_53_a0
T. A. Belkina; N. B. Konyukhova; S. V. Kurochkin. Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 5-29. http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/

[1] Abramov A. A., “O perenose granichnykh uslovii dlya sistem obyknovennykh lineinykh differentsialnykh uravnenii (variant metoda progonki)”, Zhurn. vych. mat. i mat. fiz. , 1:1 (1961), 733–737 | MR | Zbl

[2] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zhurn. vych. mat. i mat. fiz. , 1:4 (1961), 733–737 | MR | Zbl

[3] Abramov A. A., Balla K., Konyukhova N. B., Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii, VTs AN SSSR, M., 1981 | MR

[4] Abramov A. A., Ditkin V. V., Konyukhova N. B., Pariiskii B. S., Ulyanova V. I., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zhurn. vych. mat. i mat. fiz. , 20:5 (1980), 1155–1173 | MR | Zbl

[5] Abramov A. A., Konyukhova N. B., Perenos dopustimykh granichnykh uslovii iz osoboi tochki dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii, VTs AN SSSR, M., 1985 | MR

[6] Abramov A. A.,Konyukhova N. B., Balla K., “Ustoichivye nachalnye mnogoobraziya i singulyarnye kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Comput. Math., Banach Cent. Publ., 13, 1984, 319–351 | MR | Zbl

[7] Azbelev N. V., Maksimov V. P., Rakhmatulina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[8] Bakhvalov N. S., Chislennye metody, Nauka, Moskva, 1973 | MR | Zbl

[9] Belkina T. A., “Teoremy dostatochnosti dlya veroyatnosti nerazoreniya v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Analiz i modelirovanie ekonomicheskikh protsessov, 2011, no. 8, 61–74

[10] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya: I. Investitsionnye strategii i veroyatnost razoreniya”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: «Finansovaya i strakhovaya matematika»), 16:6 (2009), 961–981

[11] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya: II. Model Kramera–Lundberga s eksponentsialnym raspredeleniem razmera trebovanii”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: «Finansovaya i strakhovaya matematika»), 17:1 (2010), 3–24 | MR

[12] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya nachalnaya zadacha dlya lineinogo integrodifferentsialnogo uravneniya, voznikayuschego v modelyakh strakhovoi matematiki”, Spectr. Evolution Probl., 21:1 (2011), 40–54 | MR

[13] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya kraevaya zadacha dlya integrodifferentsialnogo uravneniya v modeli strakhovaniya so sluchainymi premiyami: analiz i chislennoe reshenie”, Zhurn. vych. mat. i mat. fiz., 52:10 (2012), 1812–1846 | MR | Zbl

[14] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR

[15] Birger E. S., Lyalikova (Konyukhova) N. B., “O nakhozhdenii dlya nekotorykh sistem obyknovennykh differentsialnykh uravnenii reshenii s zadannym usloviem na beskonechnosti. I”, Zhurn. vych. mat. i mat. fiz., 5:6 (1965), 979–990 ; “О нахождении для некоторых систем обыкновенных дифференциальных уравнений решений с заданным условием на бесконечности. II”, Журн. выч. мат. и мат. физ., 6:3 (1966), 446–-453 | MR | MR

[16] Boikov A. V., “Model Kramera—Lundberga so stokhasticheskimi premiyami”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 549–553 | DOI | MR | Zbl

[17] Boikov A. V., Stokhasticheskie modeli kapitala strakhovoi kompanii i otsenivanie veroyatnosti nerazoreniya, Diss. k.f.-m.n., Matem. in-t im. V. A. Steklova RAN, M., 2003

[18] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[19] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[20] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[21] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zhurn. vych. mat. i mat. fiz., 23:3 (1983), 629–645 | MR | Zbl

[22] Konyukhova N. B., Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh i funktsionalno-differentsialnykh uravnenii, VTs AN SSSR, M., 1988 | MR

[23] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya nekotorykh sistem nelineinykh funktsionalno-differentsialnykh uravnenii”, Diff. uravn., 31:8 (1995), 1340–1347 | MR | Zbl

[24] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007

[25] Melnikov A. V., Volkov S. N., Nechaev M. L., Matematika finansovykh obyazatelstv, GU VShE, M., 2001

[26] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii., Nauka, M., 1983 | MR | Zbl

[27] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sov. J. Numer. Anal. Math. Model., 1:4 (1986), 245–265 | MR | Zbl

[28] Bachelier L., “Théorie de la spéculation”, Ann. de l’Éc. Norm. (3), 17 (1900), 21–-86 ; Coothner P. H. (ред.), The random character of stock market prices, MIT Press, Cambridge, 1967, 517–-531 | MR | Zbl

[29] Belkina T., Hipp C., Luo S., Taksar M., “Optimal constrained investment in the Cramer—Lundberg model”, Scand. Actuar. J., 2014 ; В печати doi: 10.1080/03461238.2012.699001 | MR

[30] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singular problems for integro-differential equations in dynamic insurance models”, Differential and difference equations with applications, 2013, 27–44, Springer, New York | DOI

[31] Frolova A., Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous”, Finance Stoch., 6:2 (2002), 227–235 | DOI | MR | Zbl

[32] Grandell J., Aspects of risk theory, Springer, Berlin–New York, 1991 | MR | Zbl

[33] Kalashnikov V., Norberg R., “Power tailed ruin probabilities in the presence of risky investments”, Stochastic Process. Appl., 98 (2002), 211–228 | DOI | MR | Zbl

[34] Konyukhova N. B., “Singular problems for systems of nonlinear functional-differential equations”, Spectr. Evolution Probl., 20 (2010), 199–214

[35] Ramos A., Controlled Markov models. An application to the ruin problem, PhD Thesis, Universidad Carlos III de Madrid, Madrid, 2009

[36] Zinchenko N., Andrusiv A., “Risk processes with stochastic premiums”, Theory Stoch. Process, 14 (30):3-4 (2008), 189–208 | MR | Zbl