Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2014_53_a0, author = {T. A. Belkina and N. B. Konyukhova and S. V. Kurochkin}, title = {Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--29}, publisher = {mathdoc}, volume = {53}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/} }
TY - JOUR AU - T. A. Belkina AU - N. B. Konyukhova AU - S. V. Kurochkin TI - Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments JO - Contemporary Mathematics. Fundamental Directions PY - 2014 SP - 5 EP - 29 VL - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/ LA - ru ID - CMFD_2014_53_a0 ER -
%0 Journal Article %A T. A. Belkina %A N. B. Konyukhova %A S. V. Kurochkin %T Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments %J Contemporary Mathematics. Fundamental Directions %D 2014 %P 5-29 %V 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/ %G ru %F CMFD_2014_53_a0
T. A. Belkina; N. B. Konyukhova; S. V. Kurochkin. Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 5-29. http://geodesic.mathdoc.fr/item/CMFD_2014_53_a0/
[1] Abramov A. A., “O perenose granichnykh uslovii dlya sistem obyknovennykh lineinykh differentsialnykh uravnenii (variant metoda progonki)”, Zhurn. vych. mat. i mat. fiz. , 1:1 (1961), 733–737 | MR | Zbl
[2] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zhurn. vych. mat. i mat. fiz. , 1:4 (1961), 733–737 | MR | Zbl
[3] Abramov A. A., Balla K., Konyukhova N. B., Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii, VTs AN SSSR, M., 1981 | MR
[4] Abramov A. A., Ditkin V. V., Konyukhova N. B., Pariiskii B. S., Ulyanova V. I., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zhurn. vych. mat. i mat. fiz. , 20:5 (1980), 1155–1173 | MR | Zbl
[5] Abramov A. A., Konyukhova N. B., Perenos dopustimykh granichnykh uslovii iz osoboi tochki dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii, VTs AN SSSR, M., 1985 | MR
[6] Abramov A. A.,Konyukhova N. B., Balla K., “Ustoichivye nachalnye mnogoobraziya i singulyarnye kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Comput. Math., Banach Cent. Publ., 13, 1984, 319–351 | MR | Zbl
[7] Azbelev N. V., Maksimov V. P., Rakhmatulina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl
[8] Bakhvalov N. S., Chislennye metody, Nauka, Moskva, 1973 | MR | Zbl
[9] Belkina T. A., “Teoremy dostatochnosti dlya veroyatnosti nerazoreniya v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Analiz i modelirovanie ekonomicheskikh protsessov, 2011, no. 8, 61–74
[10] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya: I. Investitsionnye strategii i veroyatnost razoreniya”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: «Finansovaya i strakhovaya matematika»), 16:6 (2009), 961–981
[11] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya: II. Model Kramera–Lundberga s eksponentsialnym raspredeleniem razmera trebovanii”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: «Finansovaya i strakhovaya matematika»), 17:1 (2010), 3–24 | MR
[12] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya nachalnaya zadacha dlya lineinogo integrodifferentsialnogo uravneniya, voznikayuschego v modelyakh strakhovoi matematiki”, Spectr. Evolution Probl., 21:1 (2011), 40–54 | MR
[13] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya kraevaya zadacha dlya integrodifferentsialnogo uravneniya v modeli strakhovaniya so sluchainymi premiyami: analiz i chislennoe reshenie”, Zhurn. vych. mat. i mat. fiz., 52:10 (2012), 1812–1846 | MR | Zbl
[14] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR
[15] Birger E. S., Lyalikova (Konyukhova) N. B., “O nakhozhdenii dlya nekotorykh sistem obyknovennykh differentsialnykh uravnenii reshenii s zadannym usloviem na beskonechnosti. I”, Zhurn. vych. mat. i mat. fiz., 5:6 (1965), 979–990 ; “О нахождении для некоторых систем обыкновенных дифференциальных уравнений решений с заданным условием на бесконечности. II”, Журн. выч. мат. и мат. физ., 6:3 (1966), 446–-453 | MR | MR
[16] Boikov A. V., “Model Kramera—Lundberga so stokhasticheskimi premiyami”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 549–553 | DOI | MR | Zbl
[17] Boikov A. V., Stokhasticheskie modeli kapitala strakhovoi kompanii i otsenivanie veroyatnosti nerazoreniya, Diss. k.f.-m.n., Matem. in-t im. V. A. Steklova RAN, M., 2003
[18] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[19] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR
[20] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958
[21] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zhurn. vych. mat. i mat. fiz., 23:3 (1983), 629–645 | MR | Zbl
[22] Konyukhova N. B., Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh i funktsionalno-differentsialnykh uravnenii, VTs AN SSSR, M., 1988 | MR
[23] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya nekotorykh sistem nelineinykh funktsionalno-differentsialnykh uravnenii”, Diff. uravn., 31:8 (1995), 1340–1347 | MR | Zbl
[24] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007
[25] Melnikov A. V., Volkov S. N., Nechaev M. L., Matematika finansovykh obyazatelstv, GU VShE, M., 2001
[26] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii., Nauka, M., 1983 | MR | Zbl
[27] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sov. J. Numer. Anal. Math. Model., 1:4 (1986), 245–265 | MR | Zbl
[28] Bachelier L., “Théorie de la spéculation”, Ann. de l’Éc. Norm. (3), 17 (1900), 21–-86 ; Coothner P. H. (ред.), The random character of stock market prices, MIT Press, Cambridge, 1967, 517–-531 | MR | Zbl
[29] Belkina T., Hipp C., Luo S., Taksar M., “Optimal constrained investment in the Cramer—Lundberg model”, Scand. Actuar. J., 2014 ; В печати doi: 10.1080/03461238.2012.699001 | MR
[30] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singular problems for integro-differential equations in dynamic insurance models”, Differential and difference equations with applications, 2013, 27–44, Springer, New York | DOI
[31] Frolova A., Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous”, Finance Stoch., 6:2 (2002), 227–235 | DOI | MR | Zbl
[32] Grandell J., Aspects of risk theory, Springer, Berlin–New York, 1991 | MR | Zbl
[33] Kalashnikov V., Norberg R., “Power tailed ruin probabilities in the presence of risky investments”, Stochastic Process. Appl., 98 (2002), 211–228 | DOI | MR | Zbl
[34] Konyukhova N. B., “Singular problems for systems of nonlinear functional-differential equations”, Spectr. Evolution Probl., 20 (2010), 199–214
[35] Ramos A., Controlled Markov models. An application to the ruin problem, PhD Thesis, Universidad Carlos III de Madrid, Madrid, 2009
[36] Zinchenko N., Andrusiv A., “Risk processes with stochastic premiums”, Theory Stoch. Process, 14 (30):3-4 (2008), 189–208 | MR | Zbl