Bruns--Gubeladze $K$-groups for quadrangular pyramid
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 142-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a recently developed generalization of algebraic $K$-theory which has a balanced polytope as a parameter. The corresponding Steinberg group for the quadrangular pyramid is studied and $K$-groups are calculated.
@article{CMFD_2013_51_a8,
     author = {Th. Yu. Popelensky and M. V. Prikhodko},
     title = {Bruns--Gubeladze $K$-groups for quadrangular pyramid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {142--151},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/}
}
TY  - JOUR
AU  - Th. Yu. Popelensky
AU  - M. V. Prikhodko
TI  - Bruns--Gubeladze $K$-groups for quadrangular pyramid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 142
EP  - 151
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/
LA  - ru
ID  - CMFD_2013_51_a8
ER  - 
%0 Journal Article
%A Th. Yu. Popelensky
%A M. V. Prikhodko
%T Bruns--Gubeladze $K$-groups for quadrangular pyramid
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 142-151
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/
%G ru
%F CMFD_2013_51_a8
Th. Yu. Popelensky; M. V. Prikhodko. Bruns--Gubeladze $K$-groups for quadrangular pyramid. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 142-151. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/

[1] Vasershtein L. N., “Osnovy algebraicheskoi $K$-teorii”, Usp. mat. nauk, 31:4 (1976), 87–149 | MR | Zbl

[2] Nemytov A. I., Solovev Yu. P., “$BN$-pary i ermitova $K$-teoriya”, Algebra, Sb., posvyasch. 90-let. O. Yu. Shmidta, Izd. MGU, M., 1982, 102–118 | MR

[3] Nemytov A. I., Solovev Yu. P., “Gomotopicheskoe umnozhenie v predstavlyayuschem prostranstve ermitovoi $K$-teorii”, Dokl. AN SSSR, 258:1 (1982), 30–34 | MR

[4] Berrick A. J., An approach to algebraic $K$-theory, Pitman, London, 1982 | MR | Zbl

[5] Berrick A. J., Keating M. E., “The $K$-theory of triangular matrix rings, $K$-theory”, Contemp. Math., 55, part I (1986), 69–74 | DOI | MR | Zbl

[6] Bruns W., Gubeladze J., “Polyhedral $K_2$”, Manuscripta Math., 109 (2002), 367–404 | DOI | MR | Zbl

[7] Bruns W., Gubeladze J., “Higher polyhedral $K$-groups”, J. Pure Appl. Algebra, 184 (2003), 175–228 | DOI | MR | Zbl

[8] Suslin A. A., “On equivalence of algebraic $K$-theories”, Comm. Algebra, 9:15 (1981), 1559–1566 | DOI | MR | Zbl

[9] Wagoner J. B., “Equivalence of algebraic $K$-theories”, J. Pure Appl. Algebra, 11 (1977), 245–269 | DOI | MR