Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_51_a8, author = {Th. Yu. Popelensky and M. V. Prikhodko}, title = {Bruns--Gubeladze $K$-groups for quadrangular pyramid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {142--151}, publisher = {mathdoc}, volume = {51}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/} }
TY - JOUR AU - Th. Yu. Popelensky AU - M. V. Prikhodko TI - Bruns--Gubeladze $K$-groups for quadrangular pyramid JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 142 EP - 151 VL - 51 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/ LA - ru ID - CMFD_2013_51_a8 ER -
Th. Yu. Popelensky; M. V. Prikhodko. Bruns--Gubeladze $K$-groups for quadrangular pyramid. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 142-151. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a8/
[1] Vasershtein L. N., “Osnovy algebraicheskoi $K$-teorii”, Usp. mat. nauk, 31:4 (1976), 87–149 | MR | Zbl
[2] Nemytov A. I., Solovev Yu. P., “$BN$-pary i ermitova $K$-teoriya”, Algebra, Sb., posvyasch. 90-let. O. Yu. Shmidta, Izd. MGU, M., 1982, 102–118 | MR
[3] Nemytov A. I., Solovev Yu. P., “Gomotopicheskoe umnozhenie v predstavlyayuschem prostranstve ermitovoi $K$-teorii”, Dokl. AN SSSR, 258:1 (1982), 30–34 | MR
[4] Berrick A. J., An approach to algebraic $K$-theory, Pitman, London, 1982 | MR | Zbl
[5] Berrick A. J., Keating M. E., “The $K$-theory of triangular matrix rings, $K$-theory”, Contemp. Math., 55, part I (1986), 69–74 | DOI | MR | Zbl
[6] Bruns W., Gubeladze J., “Polyhedral $K_2$”, Manuscripta Math., 109 (2002), 367–404 | DOI | MR | Zbl
[7] Bruns W., Gubeladze J., “Higher polyhedral $K$-groups”, J. Pure Appl. Algebra, 184 (2003), 175–228 | DOI | MR | Zbl
[8] Suslin A. A., “On equivalence of algebraic $K$-theories”, Comm. Algebra, 9:15 (1981), 1559–1566 | DOI | MR | Zbl
[9] Wagoner J. B., “Equivalence of algebraic $K$-theories”, J. Pure Appl. Algebra, 11 (1977), 245–269 | DOI | MR